In this thesis, we have tried to explore two areas of fuzzy mathematics namely Fuzzy Calculus and its Application and Theory of Intuitionistic Fuzzy Sets and Fuzzy Lattice in 8 chapters. In Fuzzy Calculus and its Application, we have introduced the minimization of a convex fuzzy mapping and de¯ned generalized convex fuzzy mappings to derive Kuhn Tucker optimality criteria for a fuzzy nonlinear programming problem. Also we have intorduced the concept of equivalence class in the set of fuzzy numbers and developed fuzzy arithmetic to apply it in fuzzy quadratic programming problem. In the area of Intuitionistic Fuzzy Sets and Fuzzy Lattice we have compared intuitionistic fuzzy sets and generalized intuitionistic fuzzy sets and discovered some new types of generalized intuitionistic fuzzy sets. Also we have studied intuitionistic fuzzy relations over intuitionistic fuzzy sets. At the end we have introduced and constructed new types of T-g-ideals with the help of lattice theory.
Motilal Panigrahi,Guide:Professor Sudarsan Nanda Professor Geetanjali Panda Department of Mathematics Indian Institute of Technology, Kharagpur, 2006.
Browse
Collection's Items (Sorted by Submit Date in Descending order): 1 to 1 of 1
Issue Date | Title | Author(s) |
---|---|---|
2006 | Some Contributions to Fuzzy Set Theory And Its Applications | Panigrahi, Motilal |
Collection's Items (Sorted by Submit Date in Descending order): 1 to 1 of 1