Please use this identifier to cite or link to this item: http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/11748
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSamanta, Bidisha-
dc.date.accessioned2022-09-09T09:53:50Z-
dc.date.available2022-09-09T09:53:50Z-
dc.date.issued2020-12-
dc.identifier.govdocNB17165-
dc.identifier.urihttp://www.idr.iitkgp.ac.in/xmlui/handle/123456789/11748-
dc.language.isoenen_US
dc.publisherIIT Kharagpuren_US
dc.subjectGenerative modelsen_US
dc.subjectVariational autoencodersen_US
dc.subjectConditional generative modelsen_US
dc.subjectCode-switched texten_US
dc.subjectMolecular graphsen_US
dc.titleApplication-Driven Generative Models for Graph and Texten_US
dc.typeThesisen_US
Appears in Collections:Application-Driven Generative Models for Graph and Text

Files in This Item:
File Description SizeFormat 
NB17165_Abstract.pdf34.42 kBAdobe PDFView/Open
NB17165_Thesis.pdf
  Restricted Access
7.76 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.