Please use this identifier to cite or link to this item:
http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/11671
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lahiri, Avisek | - |
dc.date.accessioned | 2022-08-24T05:40:19Z | - |
dc.date.available | 2022-08-24T05:40:19Z | - |
dc.date.issued | 2021-07 | - |
dc.identifier.govdoc | NB17124 | - |
dc.identifier.uri | http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/11671 | - |
dc.language.iso | en | en_US |
dc.publisher | IIT Kharagpur | en_US |
dc.subject | Generative Adversarial Network | en_US |
dc.subject | Semantic inpainting | en_US |
dc.subject | GAN framework | en_US |
dc.subject | Semi-supervised Learning | en_US |
dc.subject | Variational Auto-encoder (VAE) | en_US |
dc.title | Effcient Frameworks for Semantic Inpainting and Learning Under Limited Annotations with Generative Adversarial Networks | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Effcient Frameworks for Semantic Inpainting and Learning Under Limited Annotations with Generative Adversarial Networks |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NB17124_Abstract.pdf | 55.53 kB | Adobe PDF | View/Open | |
NB17124_Thesis.pdf Restricted Access | 51.36 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.