Please use this identifier to cite or link to this item: http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/11424
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalakar, Pragnaditya-
dc.date.accessioned2022-07-19T06:14:54Z-
dc.date.available2022-07-19T06:14:54Z-
dc.date.issued2021-04-
dc.identifier.govdocNB16997-
dc.identifier.urihttp://www.idr.iitkgp.ac.in/xmlui/handle/123456789/11424-
dc.language.isoenen_US
dc.publisherIIT Kharagpuren_US
dc.subjectSouth Asiaen_US
dc.subjectIndus-Ganges-Brahmaputra-Meghna (IGBM) basin aquiferen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectGroundwater quantity predictionen_US
dc.subjectClimate variabilityen_US
dc.titleArtificial Intelligence Based Prediction of Groundwater Quantity and It's Drivers across Parts of South Asiaen_US
dc.typeThesisen_US
Appears in Collections:Artificial Intelligence Based Prediction of Groundwater Quantity and It's Drivers across Parts of South Asia

Files in This Item:
File Description SizeFormat 
NB16997_Abstract.pdf91.57 kBAdobe PDFView/Open
NB16997_Thesis.pdf
  Restricted Access
8.21 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.