Please use this identifier to cite or link to this item: http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/10835
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChina, Debarghya-
dc.date.accessioned2022-04-05T07:07:34Z-
dc.date.available2022-04-05T07:07:34Z-
dc.date.issued2019-08-
dc.identifier.govdocNB16476-
dc.identifier.urihttp://www.idr.iitkgp.ac.in/xmlui/handle/123456789/10835-
dc.language.isoenen_US
dc.publisherIIT Kharagpuren_US
dc.subjectAdversarial learningen_US
dc.subjectDeep convolutional neural networksen_US
dc.subjectIterative random walksen_US
dc.subjectRandom foresten_US
dc.subjectUltrasound segmentationen_US
dc.titleShallow to Deep Machine Learning Algorithms for Anatomical Structure Segmentation in Clinical Ultrasound and Their Application to High Density Compressionen_US
dc.typeThesisen_US
Appears in Collections:Shallow to Deep Machine Learning Algorithms for Anatomical Structure Segmentation in Clinical Ultrasound and Their Application to High Density Compression

Files in This Item:
File Description SizeFormat 
NB16476_Abstract.pdf74.73 kBAdobe PDFView/Open
NB16476_Thesis.pdf
  Restricted Access
47.11 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.