Please use this identifier to cite or link to this item:
http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/10835
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | China, Debarghya | - |
dc.date.accessioned | 2022-04-05T07:07:34Z | - |
dc.date.available | 2022-04-05T07:07:34Z | - |
dc.date.issued | 2019-08 | - |
dc.identifier.govdoc | NB16476 | - |
dc.identifier.uri | http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/10835 | - |
dc.language.iso | en | en_US |
dc.publisher | IIT Kharagpur | en_US |
dc.subject | Adversarial learning | en_US |
dc.subject | Deep convolutional neural networks | en_US |
dc.subject | Iterative random walks | en_US |
dc.subject | Random forest | en_US |
dc.subject | Ultrasound segmentation | en_US |
dc.title | Shallow to Deep Machine Learning Algorithms for Anatomical Structure Segmentation in Clinical Ultrasound and Their Application to High Density Compression | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Shallow to Deep Machine Learning Algorithms for Anatomical Structure Segmentation in Clinical Ultrasound and Their Application to High Density Compression |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NB16476_Abstract.pdf | 74.73 kB | Adobe PDF | View/Open | |
NB16476_Thesis.pdf Restricted Access | 47.11 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.