
Abstract 
 

This thesis mainly focuses on the mathematical modeling and analysis of the coupled phenomena 

of uid ow and solid phase deformation (poroelastohydrodynamics) inside soft biomaterials, such 

as a tumor. In the recent past, one of the most studied topics is uid ow through biological tissues 

such as tumors, articular cartilage, Glycocalyx layers, and arterial tissue. Though the internal 

structure of biological tissues such as tumors is complicated, developing mathematical models at 

least as approximations are very useful. However, over the last 50 years, of 1.5 million papers 

devoted to the area of cancer research, only about 5% are concerned with mathematical modeling. 

Robust mathematical models and techniques can provide a qualitative description of the system 

dynamics and increase insight into the mechanisms that control tumor evolution and growth. 

Theoretical predictions generated from the mathematical models may also reduce the number of 

animal experiments that need to be carried out, suggest new experimental programmes, and 

identify optimal tumor therapy schedules. Hence, a considerable contribution could be made by 

Mathematics owing to the availability of experimental data. A systematic mathematical analysis 

is required for this. Both poroelasticity theory and mixture theory can be used to model such 

phenomena (as can other modeling approaches). Here, we use the biphasic mixture theory to 

develop mass and momentum balance equations to describe the coupled phenomena of uid ow and 

solid phase deformation in the tumor and the normal tissue regions. The mathematical models are 

governed by systems of linear and nonlinear partial di_erential equations (PDEs). These PDEs 

may be of the types: elliptic, parabolic, and hyperbolic. The systems of linear and nonlinear PDEs 

in the generic form, which is the outcome of the mathematical modeling in this thesis, are very 

complex and cover a large class of physical problems. It is very challenging to handle such a 

system of nonlinear-coupled PDEs either numerically or analytically. Thus, we simplify the 

generic mathematical models in the context of poroelastohydrodynamics under some biologically 

relevant assumptions, mainly (i) we assume only linear/small deformation in the system (ii) neither 

the tumor tissue nor the healthy tissue is growing so that the volume fractions are constants (iii) 

the interface between tumor and healthy tissue is _xed and smooth. These assumptions yield many 

interesting sub-problems, which are comparatively easy to understand from the mathematical and 

physical points of view. In general, it is very di_cult or impossible to _nd exact or closed-form 

solutions of such linear and nonlinear PDEs. Hence, the PDEs have been solved either by some 

numerical method or by analytical approximations. However, before tackling any system of PDEs 

numerically, one of the fundamental tasks is to establish the well-posedness (existence, 

uniqueness, and continuous dependence on data). The existence of a solution means a given model 

is coherent. At the same time, uniqueness and stability enhance the possibility of providing 

accurate numerical approximations. Hence, this thesis's signi_cant  ontribution is to develop 

mathematical models that describe the coupled phenomena of uid ow and solid phase deformation 

inside soft biomaterials in particular tumors. Further, we establish the well-posedness of the 

governing models in a weak sense. Moreover, we develop 1D closed-form solutions in case of the 



spherically symmetric domain and analyze the behavior of uid ow, solid-phase deformation, and 

stress within a tumor. 
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