List of Abbreviations

4-HBA	4-Hydroxybenzoic acid	
4-HBAld	4-Hydroxybenzaldehyde	
4-CA	4-Coumaric acid	
AIR	Alcohol insoluble residue	
APX	Ascorbate peroxidase	
BSA	Bovine serum albumin	
C4H	Cinnamate-4-hydroxylase	
CAD	Cinnamyl alcohol deydrogenase	
CAT	Catalase	
CHT	Chitosan	
CWB	Cell wall-bound	
DW	Dry weight	
EDTA	Ethylene diamine tetaracetic acid	
FA	Ferulic acid	
FCF	Fusarium culture filtrate	
FME	Fusarium mycelium extract	
Fol	Fusarium oxysporum f. sp. lycopersici	
FW	Fresh weight	
GPX	Guaiacol peroxidase	
H_2O_2	Hydrogen peroxide	
hpi	hours post inoculation	

	HPLC	High performance liquid chromatography
	ITCC	Indian Type Culture Collection
	KI	Potassium iodide
	LC-MS/MS	Liquid chromatography tandem mass spectrometry
	MDA	Malondialdehyde
	NADP	Nicotinamide adenine dinucleotide phosphate
	NBT	Nitro blue tetrazolium
	PAL	Phenylalanine ammonia lyase
	PDA	Potato dextrose agar
	PDB	Potato dextrose broth
	psi	pound per square inch
	POD	Peroxidase
	PPO	Polyphenol oxidase
	PVP	Polyvinyl pyrolidone
	ROS	Reactive oxygen species
	SA	Salicylic acid
	SAR	Systemic acquired resistance
	SD	Standard deviation
	SOD	Superoxide dismutase
	ТВА	Thiobarbituric acid
	TBARS	Thiobarbituric acid reactive species
	TCA	Trichloroacetic acid
	TFA	Trifluoroacetic acid
	TGA	Thioglycolic acid
	TME	Trichoderma mycelium extract
	Tris-HCL	Tris(hydroxymethyl)-aminomethane hydrochloride
	UV-Vis	Ultra violet-visible

VA Vanillic acid

VAN Vanillin

v/v volume/volume

w/v weight/volume

YMA Yeast mannitol agar

YMB Yeast mannitol broth

List of Figures

- Figure 1.1 Life cycle of *Fusarium oxysporum* f. sp. *lycopersici* on the host (tomato) and soil.
- Figure 1.2 Last reaction of monolignol biosynthesis in angiosperms.
- Figure 1.3 Monolignol biosynthetic pathway occurring in most angiosperms.
- Figure 1.4 A model describing the positions of *Arabidopsis* genes in signal transduction networks that control the activation of defense responses.
- Figure 3.1a Stacked HPLC chromatogram of authentic standard phenolic compounds detected at 254 nm and 310 nm.
- Figure 3.1b Stacked HPLC chromatograms of major cell wall bound phenolic compounds in roots of tomato detected at 254 nm and 310 nm.
- Figure 3.2 Levels of major cell wall bound phenolics identified in roots of tomato.
- Figure 3.3a HPLC chromatograms showing phenylalanine ammonia lyase (PAL) activity (formation of *t*-cinnamic acid from L-phenylalanine detected at 290 nm and 330 nm) in roots of tomato.
- Figure 3.3b Phenylalanine ammonia lyase (PAL) activity (nkat.mg⁻¹ protein) in tomato roots on a time course.
- Figure 3.4 Peroxidase (POD) activity (nkat.mg⁻¹ protein) in tomato roots on a time course.
- Figure 3.5 Total phenolic content (expressed as mg 4-hydroxybenzoic acid equivalent. g^{-1} FW) in tomato roots on a time course.
- Figure 3.6 Antimicrobial activities of major cell wall bound phenolic compounds against *Fusarium oxysporum* f. sp. lycopersici.

Figure 3.7 Time course formation of 4-hydroxybenzoic acid (4-HBA), 4coumaric acid (4-CA) and ferulic acid (FA) in elicited and nonelicited (control) roots of tomato.

- Figure 3.8 Deposition of lignin (expressed as thioglycolic acid derivatives at 280 nm.g⁻¹ alcohol insoluble residue) in the cell wall on a time course after elicitation of the roots of tomato with different elicitors.
- Figure 3.9 Phenylalanine ammonia lyase (PAL) activity (nkat.mg⁻¹ protein) on a time course after elicitation of the roots of tomato with different elicitors.
- Figure 3.10 Peroxidase (POD) activity (nkat.mg⁻¹ protein) on a time course after

elicitation of the roots of tomato with different elicitors.

- Figure 3.11 Polyphenol oxidase (PPO) activity (nkat.mg⁻¹ protein) on a time course in elicited and non-elicited (control) roots of tomato.
- Figure 3.12 Cinnamyl alcohol dehydrogenase (CAD) activity (nkat.mg⁻¹ protein) on a time course after elicitation of the roots of tomato with different elicitors.
- Figure 3.13 H_2O_2 generation (expressed as μ mol.g⁻¹FW) in roots of tomato plants on a time course after inoculation of the plants with *Fusarium oxysporum* f. sp. *lycopersici* and in the control.
- Figure 3.14 Lipid peroxidation (measured in terms of malondialdehyde (MDA) content and expressed as µmol.g⁻¹FW) in roots of tomato plants on a time course after inoculation of the plants with *Fusarium oxysporum* f. sp. *lycopersici* and in the control.
- Figure 3.15 Superoxide dismutase activity (expressed as nkat.mg⁻¹protein) in roots of tomato plants on a time course after inoculation of the plants with *Fusarium oxysporum* f. sp. *lycopersici* and in the control.
- Figure 3.16 Catalase activity (expressed as nkat.mg⁻¹protein) in roots of tomato plants on a time course after inoculation of the plants with *Fusarium oxysporum* f. sp. *lycopersici* and in the control.
- Figure 3.17 Guaiacol peroxidase activity (expressed as nkat.mg⁻¹protein) in roots of tomato plants on a time course after inoculation of the plants with *Fusarium oxysporum* f. sp. *lycopersici* and in the control.
- Figure 3.18 Ascorbate peroxidase activity (expressed as nkat.mg⁻¹protein) in roots of tomato plants on a time course after inoculation of the plants with *Fusarium oxysporum* f. sp. *lycopersici* and in the control.
- Figure 3.19 Total phenolics content (expressed as mg *p*-hydroxybenzoic acid equivalent.g⁻¹FW) in roots of tomato plants on a time course after inoculation of the plants with *Fusarium oxysporum* f. sp. *lycopersici* and in the control.
- Figure 3.20 Overlay of HPLC chromatograms showing accumulation of salicylic acid (SA) detected at 275 nm and 310 nm in roots of tomato treated with salicylic acid through foliar spray.
- Figure 3.21 LC-MS/MS chromatograms of standard salicylic acid and that from the roots of tomato (sample) treated with salicylic acid through foliar spray.
- Figure 3.22 Accumulation of free salicylic acid (SA) in roots of tomato plants treated with SA through the root feeding.
- Figure 3.23 Accumulation of free salicylic acid (SA) in roots of tomato plants

treated with SA through foliar spray.

- Figure 3.24 PAL activity in roots of tomato after the plant roots were treated with 200 μ M salicylic acid through hydroponics medium.
- Figure 3.25 PAL activity in roots of tomato after the plant roots were treated with 200 μ M salicylic acid through foliar spray.
- Figure 3.26 POD activity in roots of tomato after the plant roots were treated with 200 µM salicylic acid through hydroponics medium.
- Figure 3.27 POD activity in roots of tomato after the plant roots were treated with 200 µM salicylic acid through foliar spray.
- Figure 3.28 Induction of resistance in tomato plants against *Fusarium oxysporum* f. sp. *lycopersici* infection by root feeding with 200 μM salicylic acid.
- Figure 3.29 Induction of resistance in tomato plants against *Fusarium* oxysporum f. sp. lycopersici infection through foliar spray with 200 µM salicylic acid.
- Figure 3.30 Levels of free salicylic acid (SA) in noninoculated roots and in *Fusarium oxysporum* f. sp. *lycopersici* infected roots 120 h after inoculation with spore suspension.
- Figure 3.31 Effect of salicylic acid (SA) on mycelial growth of *Fusarium* oxysporum f. sp. lycopersici culture.
- Figure 3.32 Growth of hairy roots (Line 13) of tomato.
- Figure 3.33 Stacked HPLC chromatograms of major cell wall bound phenolic compounds in hairy roots of tomato detected at 254 nm and 310 nm.
- Figure 3.34 Cell wall-bound phenolics in hairy roots of tomato.
- Figure 3.35 Phenylalanine ammonia lyase (PAL) activity (nkat.mg⁻¹ protein) on a time course after elicitation of the roots of tomato with different elicitors.

List of Tables

- Table 1.1 Some more examples of colossal losses caused by plant diseases.
- Table 2.1 Constituents of Knop's solution.
- Table 2.2 Constituents of yeast mannitol broth (YMB) medium.
- Table 3.1Performance of two strains of Agrobacterium rhizogenes and differenttypes of explants for hairy roots induction in tomato.
- Table 3.2 Growth of hairy root lines of tomato in different media at 30 days.
- Table 3.3Time course elicitation of 4-hydroxybenzoic acid (4-HBA), 4-coumaric
acid (4-CA) and ferulic acid (FA) in hairy roots of tomato.

List of Plates

- Plate 1.1 Tomato is a high value crop in the world. A. A tomato plant with unripe fruits; B. Harvested ripe fruits of tomato
- Plate 1.2 Leaf yellowing wilting symptoms of *Fusarium* wilt on tomato plant. Inset: Vascular browning on stem.
- Plate 1.3 Growth of *Fusarium oxysporum* f. sp. *lycopersici* on potato dextrose agar medium
- Plate 1.4 Life cycle of *Fusarium oxysporum* f. sp. *lycopersici* on the host (tomato) and soil.
- Plate 3.1 Antifungal assay of cell wall bound phenolics against *Fusarium* oxysporum f. sp. lycopersici by media amendment method. Control plate (left) and ferulic acid amended plate at 200 µM concentration (right).
- Plate 3.2 Tomato plants in hydroponics culture. A. Batch of plants; B. A single tomato plant.
- Plate 3.3 Effects of 200 μM salicylic acid (SA) treatment and inoculation of *Fusarium oxysporum* f. sp. *lycopersici* (Fol) on hydroponically-grown tomato. A. Vascular browning; B. Leaf yellowing wilting.
- Plate 3.4 Tomato hairy roots. A. Hairy roots emerging from leaf explant; B. Tomato hairy roots growing in liquid B5 medium in a flask.