List of Figures

	Figure No.		Page No.
	Fig. 1.1	General structure of polyhydroxyalkanoates	5
	Fig. 1.2	PHB metabolism in <i>Alcaligenes eutrophus</i> (<i>Wautersia eutropha</i>)	8
	Fig. 1.3	The biosynthetic pathway of PHB and P(3HB-co-3HV) in <i>Alcaligenes eutrophus (Wautersia eutropha</i>)	10
	Fig. 3.1	GC chromatograms of A) standard poly(3-hydroxybutyric acid), B) standard poly(3-hydroxybutyric acid- <i>co</i> -3-hydroxyvaleric acid) and C) <i>Synechocystis</i> sample	38
	Fig. 3.2	Comparison of absorption spectrum of crotonic acid with the acid-digested polymer of <i>Synechocystis</i> sp. PCC 6803 sample and the standard poly(3-hydroxybutyric acid)	38
	Fig. 3.3	FT-IR spectra of A) standard poly(3-hydroxybutyric acid) and B) isolated polymer from <i>Synechocystis</i> sp. PCC 6803	39
	Fig. 3.4	¹ H-NMR spectra of the A) standard poly(3-hydroxybutyric acid- <i>co</i> -3-hydroxyvaleric acid) and B) <i>Synechocystis</i> sp. PCC 6803 sample	40
	Fig. 3.5	Mass spectra of A) propyl ester of the standard poly(3- hydroxybutyric acid) and B) propyl ester of the polymer extracted from <i>Synechocystis</i> sample	41
	Fig. 3.6	Accumulation of PHB in <i>Synechocystis</i> sp. PCC 6803 with reference to growth	42
C	Fig. 3.7	Comparison of PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 grown under usual light-dark cycles with continuous illumination	43
	Fig. 3.8	Effects of monochromatic irradiations on growth and PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 on day 21 of incubation	46
	Fig. 3.9A	Impact of various concentrations of ethanol, maltose, fructose and glucose on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803	50
	Fig. 3.9B	Impact of various concentrations of acetate, butyrate, sucrose and citrate on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803	51

Fig. 3.10	Impact of various concentrations of carbon sources on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 on day14 of incubation	52
Fig. 3.11	Impact of gas-exchange limitation on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 under carbon supplemented condition	55
Fig. 4.1	Normal (%) probability plot for internally studentized residuals	72
Fig. 4.2	Plot for internally studentized residuals vs. predicted response	73
Fig. 4.3	3D response surface for PHB yield	74-75
	(A) Interactive effects of varied K_2HPO_4 and $NaNO_3$ at zero level of acetate (0.25%) and cell density (1.2 g l ⁻¹)	
	(B) varied K_2HPO_4 and acetate at zero level of NaNO ₃ (0.75 g l ⁻¹) and cell density (1.2 g l ⁻¹)	
	(C) varied NaNO ₃ and acetate at zero level of K_2HPO_4 (20 mg l ⁻¹) and cell density (1.2 g l ⁻¹)	
	(D) varied K_2HPO_4 and cell density at zero level of NaNO ₃ (0.75 g l ⁻¹) and acetate (0.25%).	
	(E) varied NaNO ₃ and cell density at zero level of K_2HPO_4 (20 mg l ⁻¹) and acetate (0.25%)	
	(F) varied acetate and cell density at zero level of K_2HPO_4 (20 mg l ⁻¹) and NaNO ₃ (0.75 g l ⁻¹)	
Fig. 4.4	Time-course of PHB accumulation in <i>Synechocystis</i> sp. PCC 6803 under optimized condition	76
Fig. 5.1	Effects of uncouplers on PHB accumulation potential of the photoautotrophically-grown <i>Synechocystis</i> sp. PCC 6803	84
Fig. 5.2	Effect of DCMU (10 mM) on PHB accumulation potential of the photoautotrophically-grown <i>Synechocystis</i> sp. PCC 6803	85
Fig. 5.3	Effect of 2,3-butanedione (10 mM) on PHB accumulation potential of	86-87
	(A) P-deficient cells of Synechocystis sp. PCC 6803	
	(B) P-deficient + acetate-grown cells of <i>Synechocystis</i> sp. PCC 6803.	

 \mathbf{C}

xiv

Fig. 5.4	Fig. 5.4Time-course of PHB mobilization in Synechocystis sp. PCC6803 incubated under the usual light-dark (14: 10 h) cycles			
	(A) Cultures pre-grown in normal BG-11 medium			
	(B) pre-grown in N-deficient BG-11 medium			
	(C) pre-grown under chemoheterotrophic condition			
Fig. 5.5	Mobilization of PHB in <i>Synechocystis</i> sp. PCC 6803 in carbon-supplemented medium under dark and the usual light-dark cycles	91		
	(A) pre-grown in N-deficient BG-11 medium			
	(B) pre-grown under chemoheterotrophic condition			
Fig. 5.6	Hypothesized schematic regulation of PHB accumulation by metabolic inhibitors in <i>Synechocystis</i> sp. PCC 6803	94		
Fig. 6.1	Thin layer chromatograms of propyl esters of standards and <i>Synechocystis</i> samples in benzene: ethyl acetate solvent system at a ratio of 49:1	102		
Fig. 6.2	 GC chromatograms of (A) standard poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (B) Synechocystis sample grown under propionate-supplemented condition (C) Synechocystis sample grown under valerate-supplemented condition 	102		
Ele (2		102 104		
F1g. 6.3	 (A) standard poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) 	103-104		
	(B) sample obtained from <i>Synechocystis</i> sp. PCC 6803 grown under 0.01% propionate-supplemented condition			
	(C) under 0.01% valerate-supplemented condition			
Fig. 6.4	¹ H-NMR spectra of	105		
	(A) standard poly(3-hydroxybutyric acid- <i>co</i> -3- hydroxyvaleric acid)			
	(B) sample obtained from <i>Synechocystis</i> sp. PCC 6803 grown under 0.01% propionate-supplemented condition			
	(C) under 0.01% valerate-supplemented condition			

Fig. 6.5	Mass spectra of	106
	(A) propyl ester of 3-hydroxyvaleric acid (3HV) of standard P(3HB-co-3HV)	
	(B) sample extracted from <i>Synechocystis</i> sp. PCC 6803 grown under propionate	
	(C) valerate-supplemented conditions	
Fig. 6.6	Time-course of P(3HB- <i>co</i> -3HV) co-polymer accumulation in <i>Synechocystis</i> sp. PCC 6803	107
Fig. 6.7	FT-IR spectra (ranging from 900-1500 cm ⁻¹) of PHB and P(3HB- <i>co</i> -3HV) co-polymer obtained from <i>Synechocystis</i> sp. PCC 6803 in KBr pellets	110
Fig. 6.8	Scanning electron micrographs of the upper surface of (A) PHB (B) P(3HB-co-17% 3HV) (C) P(3HB-co-25% 3HV) membranes obtained from	111
	Synechocystis sp. PCC 6803	
Fig. 6.9	Cross-section of PHB and P(3HB- <i>co</i> -3HV) membranes by scanning electron micrographs	112
Fig. 6.10	X-ray diffractograms of PHB and P(3HB-co-3HV) co- polymer membranes obtained from <i>Synechocystis</i> sp. PCC 6803	113
Fig. 6.11	DSC thermograms of PHB and P(3HB-co-3HV) co- polymers obtained from <i>Synechocystis</i> sp. PCC 6803	114
Fig. 6.12	TG/ DTA/DTG thermograms of PHB and P(3HB-co-3HV) co-polymer	115-116
	(A) PHB	
	(B) P(3HB- <i>co</i> -17% 3HV) and	
	(C) P(3HB-co-25% 3HV)	
Fig. 6.13	Thermogravimetric (TG) analysis curves of PHB, P(3HB- <i>co</i> -17mol% 3HV) and P(3HB- <i>co</i> -25mol% 3HV)	116

List of Tables

Table No.		Page No.
Table 1.1	Actual and potential industrial applications of PHAs	7
Table 1.2	Summary of production of PHAs in transgenic plants	13
Table 1.3	Reports on accumulation of PHAs in different cyanobacterial species	15-16
Table 2.1	Composition of BG-11 medium	18
Table 2.2	Distribution of centre, cubic and axial points according to variables	25
Table 2.3	Appearance of 'Analysis of Variance' table for four variables	26
Table 3.1	Nutrient substitution in BG-11 medium under specific	35
	nutrient deficiency	
Table 3.2	Accumulation of PHB in <i>Synechocystis</i> sp. PCC 6803 at different pH on day 21 of incubation	43
Table 3.3	Impact of temperature on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 on day 21 of incubation	44
Table 3.4	Accumulation of PHB in <i>Synechocystis</i> sp. PCC 6803 grown in presence of different nitrogen sources	44
Table 3.5	Growth and accumulation of PHB in <i>Synechocystis</i> sp. PCC 6803 grown in vit B_1 - and vit B_{12} -supplemented medium	45
Table 3.6	PHB accumulation in <i>Synechocystis</i> sp. PCC 6803 under nutrient deficiency	46
Table 3.7	Effect of NaCl stress on PHB accumulation potential of <i>Synechocystis</i> sp PCC 6803	47
Table 3.8	Effects of heavy metal ions on PHB accumulation potential of the stationary phase cultures of <i>Synechocystis</i> sp. PCC 6803	48
Table 3.9	Effects of heat and chilling stresses on PHB accumulation potential of the stationary phase cultures of <i>Synechocystis</i> sp. PCC 6803	49
Table 3.10	Accumulation of PHB in <i>Synechocystis</i> sp. PCC 6803 under mixotrophy	52

(

	Table 3.11	Interaction of N- and P-deficiency with exogenous carbon sources on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 on day 14 of incubation	53
	Table 3.12	Chemoheterotrophic accumulation of PHB in <i>Synechocystis</i> sp. PCC 6803	54
	Table 3.13	Dissolved oxygen concentration of the medium after 7 days of incubation of <i>Synechocystis</i> cells under gas-exchange limited condition	55
	Table 4.1	Experimental range and levels of independent variables used for optimization study	66
	Table 4.2	Central composite rotary experimental design of independent variables for optimization study	67
	Table 4.3	Central composite rotary design matrix with actual and predicted responses for PHB yield	69
	Table 4.4	Regression analysis of the experimental design for PHB yield	70
	Table 4.5	Regression analysis of the experimental design for PHB yield after eliminating the insignificant model terms	71
	Table 4.6	ANOVA of the quadratic model for PHB yield	72
	Table 4.7	PHB yield before and after optimization of the test variables	76
	Table 5.1	Effects of CCCP (20 μ M), DCCD (20 μ M) and DNP (2 mM) on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 under dark on day 6 of incubation	84
C	Table 5.2	Effect of DCMU (10 mM) on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 in presence of glucose on day 10 of incubation	85
	Table 5.3	Interactive effects of 2,3-butanedione and acetyl phosphate on PHB accumulation potential of <i>Synechocystis</i> sp. PCC 6803 on day 10 of incubation	87
	Table 5.4	Effects of illumination, dark incubation and P-deficiency on PHB mobilization in <i>Synechocystis</i> sp. PCC 6803 pre-grown under photoautotrophic, N-deficient and chemoheterotrophic conditions	90
	Table 6.1	Accumulation of P(3HB- <i>co</i> -3HV) co-polymer at varied concentrations of propionate in <i>Synechocystis</i> sp. PCC 6803 on day 14 of incubation	108

- Table 6.2Accumulation of P(3HB-co-3HV) co-polymer at varied108concentrations of valerate in Synechocystis sp. PCC 6803 onday 14 of incubation
- Table 6.3Accumulation of PHB and P(3HB-co-3HV) co-polymer109under optimized conditions on day 7 of incubation
- Table 6.4Mechanical properties of PHB and P(3HB-co-3HV) co-
polymer with different monomer compositions synthesized
by Synechocystis sp. PCC 6803
- Table 6.5Thermal properties of PHB and P(3HB-co-3HV) co-polymer114with varied 3HV mol fraction
- Table 6.6Comparative account on the properties of PHB and P(3HB-
co-3HV) co-polymer of Synechocystis sp. PCC 6803 with the
commercially available polymers and also the polymers
obtained from other bacterial sources

121