Subject				Page No.
Title Page				i
Certificate of	Appro	val		iii
Certificate				V
Declaration				vii
Acknowledge	ements			ix
List of Symb	ols		X	xi
List of Abbre	eviation	5		xiii
Abstract				XV
Contents		. (xvii
Chapter 1	Intro	luction		1
Chapter 2	Liter	ature reviev	v	5
	2.1	Introductio	n	5
	2.2	Review of	solidification	6
		2.2.1 C	ast microstructure	6
		2.2.2 Se	olidification rate	6
		2.2.3 C	asting processes	7
	2.3	Grain refin	ing of aluminium alloy	8
	2.4	Review of	Aluminium-Scandium alloy	11
		2.4.1 B	inary Al-Sc alloy	11
		2.4.2 To	ernary Al-Sc-Zr alloy	12

CONTENTS

		2.4.3	Quaternary Al-Mg-Sc-Zr alloy	14
		2.4.4	Other alloying addition to the Al-Sc alloy	15
		2.4.5	Age hardening behavior of Al-Sc alloy	16
		2.4.6	Mechanical properties of Al-Sc alloy	17
		2.4.7	Wear behavior of Al-Sc alloy	20
		2.4.8	Corrosion behavior of Al-Sc alloy	20
	2.5	Metal N	Iatrix Composite	22
		2.5.1	Preparation of particulate composite	22
		2.5.2	Mechanical properties of composite	25
		2.5.3	Wear behavior of composite	26
		2.5.4	Corrosion behavior of composite	26
Chapter 3	Expe	rimenta	l procedure	29
	3.1	Introduc	stion	29
	3.2	Selectio	on of materials	29
	3.2 3.3	Selectio Preparat	on of materials	29 31
	3.2 3.3	Selectio Preparat 3.3.1	on of materials tion of alloys and composites Preparation of alloys	29 31 34
	3.2	Selection Preparate 3.3.1 3.3.2	on of materials tion of alloys and composites Preparation of alloys Preparation of composites	29 31 34 34
	3.2 3.3 3.4	Selectio Preparat 3.3.1 3.3.2 Chemic	on of materials tion of alloys and composites Preparation of alloys Preparation of composites al analysis	29 31 34 34 37
6	3.2 3.3 3.4 3.5	Selection Preparate 3.3.1 3.3.2 Chemice Metallo	on of materials tion of alloys and composites Preparation of alloys Preparation of composites al analysis	29 31 34 34 37 39
	3.2 3.3 3.4 3.5	Selectio Preparat 3.3.1 3.3.2 Chemic Metallo 3.5.1	on of materials tion of alloys and composites Preparation of alloys Preparation of composites al analysis graphy	29 31 34 34 37 39 39
	3.2 3.3 3.4 3.5	Selectio Preparat 3.3.1 3.3.2 Chemic Metallo 3.5.1 3.5.2	on of materials tion of alloys and composites Preparation of alloys Preparation of composites al analysis graphy Optical microscopy Scanning Electron Microscopy	29 31 34 34 37 39 39 39
	3.2 3.3 3.4 3.5	Selectio Preparat 3.3.1 3.3.2 Chemic Metallo 3.5.1 3.5.2 3.5.3	on of materials	29 31 34 34 37 39 39 39 39
	3.2 3.3 3.4 3.5 3.6	Selection Preparate 3.3.1 3.3.2 Chemice Metalloy 3.5.1 3.5.2 3.5.3 Cold an	on of materials	29 31 34 34 37 39 39 39 40 40

3.8	Mechan	nical pr	operties			41
	3.8.1	Hard	ness me	asuremen	t	41
	3.8.2	Tens	ile test	•••••		42
3.9	Wear te	st				42
3.10	Physica	al prop	erties			43
	3.10.1	Den	sity mea	surement		43
	3.10.2	X-ra	y diffrac	ction studi	ies	43
	3.10.3	Elec	trical res	sistivity m	neasurement	43
	3.10.4	Diff	erential '	Thermal A	Analysis (DTA)	44
3.11	Corrosi	ion tes	t			44
Chan	ton 1	Dogu	lta and d	liconscion		15
Chap	ler 4		Its and t	ustion		43
		4.1	Costing	cuon	riotias	43
		4.2	Micro	tructuro	11500.5	43
		4.5	131	Result o	f Binary Al. Sc alloys	40
			4.J.1	1311	As-cast	40
				4.3.1.1	As-cast ageing	55
			432	Discussi	on of the binary	
			7.3.2	Al-Sc al	loys	55
			4.3.3	The add	ition of Zr to the binary	-
				Al-Sc al	loys	59
				4.3.3.1	As-cast	59
			4.2.4	4.3.3.2	As-cast ageing	61
			4.3.4	to the b	inary Al-Sc alloys	66
			4.3.5	Results	of ternary c-0.157r alloy	67
				4.3.5.1	As-cast	67
				4.3.5.2	As-cast ageing	74

	4.3.6	Discussio Al-0.3Sc-	n from the ternary 0.15Zr alloy	77
	4.3.7	The additi Al-0.3Sc-(on of Mg to the ternary).15Zr alloy	81
		4.3.7.1	As-cast	81
		4.3.7.2	As-cast ageing	85
	4.4.8	Discussio ternary A	n of the addition of Mg to the Al- 0.3Sc-0.15Zr alloy	87
	4.3.9	The addit ternary A	ion of TiB ₂ and Mg to the Al-0.3Sc0.15Zr alloy	93
		4.3.9.1	As-cast	93
		4.3.9.2	As-cast ageing	101
		4.3.10	Discussion of the addition of TiB ₂ and Mg	103
4.4	X-ray d	iffraction an	alysis	107
4.5	Density	variation		111
4.6	Electric	al resitivity	measurement	118
4.7	Differen	ntial Therma	l Analysis (DTA)	118
4.8	Hardne	\$\$		122
	4.8.1	Binary Al-S	c and ternary Al-Sc-Zr alloys	122
	4.8.2	Ternary Al-	0.3Sc-0.15Zr	124
	4.8.3	Addition of	Mg to the ternary alloy	127
	4.8.4	Addition of	(TiB ₂) _p and Mg to the ternary alloy	131
	4.8.5	Hot and col	d rolling	131
4.9	Tensile	properties.		141
	4.9.1	Addition of	Mg and the variation in cooling rate	141
	4.9.2	Addition of	Mg and TiB_2 to the ternary alloys	142
4.10	Wear p	properties		148
	4.10.1	Addition cooling	of Mg and the variation in rate	148
	4.10.2	Addition	of Mg and $(TiB_2)_p$ to the ternary	
		Al-0.3Sc	-0.15Zr	153
			21/1 	

4.11	Corro	sion	160
	4.11.1	The addition of Mg to the ternary alloys	160
	4.11.2	The addition of (TiB ₂) _p and Mg	164
Chapt	ter 5	Conclusions	169
Chapt	ter 6	Summery and view	173
REFE	RENCI	ES	175
Curri	culum v	rita	

Table	Page No.
2.1	Tensile properties of Al alloys with Sc
2.2	Tensile properties of particulate reinforced Aluminium alloy composite25
3.1	Instantaneous cooling rate (⁰ C/s) obtained in different moulds37
3.2	Chemical compositions of Al-Sc and Al-Sc-Zr alloys (wt %)
3.3	Chemical compositions of the Al-Sc-Zr, Al-Mg and Al-Mg-Sc-Zr alloys (wt %)
3.4	Chemical compositions of composites (wt %)
3.5	List of wear parameters used42
4.1	Results of the local EDX analysis performed on sand-cast binary Al- 0.05Sc, Al-0.1Sc and Al-0.5Sc alloys. Compositions are in at%
4.2	Results of the local EDX analysis performed on sand-cast ternary Al- 0.5Sc-Zr alloy. Compositions are in at %
4.3	Results of the local EDX analysis performed on CD cast sample. Compositions are in at. %
4.4	Results of the local EDX analysis performed on CD cast sample. Compositions are in at. %
4.5	EDX micro-chemical analysis (in at %) of the corresponding point in figure 4a
4.6	Resistivity of the as-cast and aged Al-6Mg-0.3Sc-0.15Zr alloy118
4.7	Solidus and liquidus temperature of the different alloy
4.8	Strength properties of the Al-6Mg-0.3Sc-0.15Zr alloy141
4.9	Strength properties of the Al-xMg-0.3Sc-0.15Zr alloy reinforced with $5wt\%$ (TiB ₂) _p composites cast in QIC142
4.10	Summary of the results of polarization resistance measurement of different alloys in 3.56 wt% NaCl solution161

LIST OF TABLE CAPTIONS

4.11	Corrosion rate by weight loss technique of the different alloy in HCl, H ₂ SO ₄ and NaCl solution	164
4.12	Summary of results of polarization resistance measurement of different composites in 3.56 wt% NaCl	165
4.13	Corrosion rate by weight loss technique of the different alloy in HCl, H ₂ SO ₄ and NaCl solution	167

LIST OF FIGURE CAPTIONS

Figure	Page No.
2.1	Al-rich end of the binary Al-Sc equilibrium phase diagram12
2.2	Isothermal section of Al corner of the ternary Al-Sc-Zr phase diagram at 600 [°] C
2.3	Isothermal section of Al corner of the ternary Al-Mg-Sc phase diagram at 430 ^o C14
3.1	Photographs of different moulds used for obtaining wide range of cooling rates and their schematic diagrams
3.2	Schematic diagram of the experimental set-up of oil quenching
3.3	Samples cast in (a) sand mould, (b) alumina insulated mould, (c) copper die, (d) QIC (marked 1) and CIC (marked 2). (e) A cross section of the wedged shape casting
3.4	Cooling curve of sand cast (a) binary Al-Sc and (b) ternary Al-Sc-Zr alloys and (c) quaternary Al-6Mg-0.3Sc-0.15Zr alloy cast in QIC and CIC process
3.5	Schematic diagram of the tensile specimen
4.1	Samples cast in (a) investment shell mould showing defects during oil quenching and (b) surface shrinkage in a component. Hot crack surface of the sample cast in (c) oil quenching investment casting and (d) Cudie casting
4.2	Optical micrograph of the as-cast (a) Al-0.05Sc (b) Al-0.1Sc and (c) Al0.5 Sc alloys cast in RSM

4.3	Optical micrograph etched with Keller's agent of the as-cast (a) Al- 0.05Sc (b) Al-0.1Sc and (c) Al-0.5Sc alloys cast in RSM showing the grain boundary precipitates
4.4	SEM micrographs of the samples cast in RSM. The as-cast (a) Al0.05Sc alloy showing the coarse Si particles precipitates at the interdendritic region, Al 0.1Sc alloy (b) low magnification, (c) enlarged micrograph (a) of the region marked 1 and Al 0.5Sc alloy showing the pure (d) Al ₃ Sc precipitates marked D and Fe rich phase marked by arrow
4.5	TEM micrograph of as-cast (a) Al0.5Sc alloy cast in RSM showing many dispersive precipitates in the matrix
4.6	Annealed (at 470^{0} C for 24 hours) microstructure of Al0.05Sc alloy cast in RSM (a) showing Al ₃ Sc precipitates and dislocation line interaction and (b) dislocation density. (c) Dense dislocation line and (d) at a higher magnification non-coherent particle in Al-0.1Sc alloy cast in RSM
4.7	Optical micrograph of the as-cast (a) Al-0.05Sc-0.15Zr (b) Al-0.1Sc-0.15Zr and (c) Al-0.5Sc-0.15Zr alloys cast in RSM61
4.8	SEM micrograph of as-cast (a) Al-0.05Sc-0.15Zr alloy cast in RSM showing typical precipitates at the interdendritic region, (b) enlarged micrograph (a) of the region marked 1, (c) Al-0.5Sc0.15Zr alloy cast in RSM low magnification micrograph and (d) high magnification of the primary particles
4.9	TEM micrographs of the alloys cast in RSM and annealed at 470 ^o C for 24 hours. Annealed microstructure of (a) Al-0.05Sc-0.15Zr alloy is showing dense dislocation line interaction, semi coherent particle in (b) Al-0.1Sc-0.15Zr and (c) Al-0.5Sc-0.15Zr alloys and (d) precipitates density in Al-0.5Sc-0.15Zr alloy
4.10	Optical micrograph showing the grain structure of the sample cast in (a) Cu Die and (b) alumina insulated mould. SEM micrograph of the as- cast precipitates in Cu-die (c) low magnification and (d) enlarge micrograph (c) of the region marked by A
4.11	SEM micrographs of the Al-0.3Sc-0.15Zr cast in AIM showing the (a) faceted Al_3 (Sc, Zr) particle, (b) a typical fan shaped precipitate, (c) low magnification of the grain boundary and (d) enlarge micrograph (c) of the region marked by B

73	TEM micrographs of the Al-0.3Sc-0.15Zr alloy cast in AIM showing the precipitates (a) originated from the grain boundary, (b) dense and (c) less precipitate	4.12
75	TEM micrograph of Al-0.3Sc-0.15Zr alloy cast in CD showing the precipitates in (a) as-cast (b) aged at 300 ^o C for 2h and (c) 400 ^o C for 2h sample	4.13
77	TEM micrograph of copper die cast sample aged at 400° C for 2 hours showing the (a) coherent and coexisting of coherent and semi coherent precipitates in (b) copper die and (c) AIM cast sample	4.14
83	5 Optical micrograph of Al-6Mg-0.3Sc-0.15Zr as-cast alloy cast in QIC and etched with Keller's reagent (a) showing the refined grain structure with duplex grain size distribution, electrolytic polished and without etched sample cast in CIC at (b) lower magnification. Optical micrograph of as-cast CIC showing (c) coarse precipitates inside the grain and (d) enlarge micrograph of the coarse precipitate	4.15
85	SEM micrograph of Al-6Mg-0.3Sc-0.15Zr as-cast QIC alloy (a) star like $Al_3(Sc, Zr)$ primary particle with very small precipitates of Al_3Sc at and around the primary particle, (b) small different round size precipitates of Al_3Sc inside the grain and (c) line scan of the primary precipitates along the line BB of (a)	4.16
86	Optical micrographs of Al-6Mg-0.3Sc-0.15Zr alloy electrolytic polished and without etch QIC sample (a) as-cast- aged at 300° C for 5 hours and (b) 400° C for 1 hour	4.17
89	TEM micrograph of Al-6Mg-0.3Sc-0.15Zr alloy aged at 300 ⁰ C for 4 hours of (a) CIC and (b) QIC processed alloy and (c) EDP of the fine precipitate corresponding (b)	4.18
95	Optical micrographs of as-cast composites etched with Keller's reagent of (a) 0Mg, (b) 1.5 Mg, (c) 3.5Mg and (d) 6 Mg cast in QIC	4.19
96	20 Variation in grain size of the samples cast in QIC with increase in Mg content	4.20
100	As-cast unetched SEM micrograph of the (a) & (b) 0 Mg, (c) & (d) 1.5Mg, (e) & (f) 3.5Mg, (g) & (h) 6Mg composites cast in QIC and (i) EDX line scan analysis along AA of (c)	4.21

4.22	Bright field image TEM micrograph of the composite with 3.5% Mg composite cast in QIC showing (a) a cell structure precipitation of TiB ₂ , (b) the dense and uniform distribution of the TiB ₂ particles and (c) the fine precipitates of Al ₃ Sc, Al ₃ (Sc, Zr) in the corresponding dark field image of (b) aged at 300° C for 5 hrs
4.23	As-cast SEM micrograph of 3.5Mg composite cast in QIC showing primary particles inside the grain by arrows105
4.24	As-cast (a) optical micrograph and (b) SEM micrograph of $3.5Mg$ composite cast in AIM showing primary coarse grain structure and coarse TiB ₂ particles106
4.25	XRD of the as-cast binary Al-2Sc, Al-0.5Sc and ternary Al-0.5Sc- 0.15Zr alloys cast in RSM
4.26	X-ray diffraction taken from the as-cast Al-6Mg-0.3Sc-0.15Zr alloy cast in QIC and NIC and as-cast Al-0.3Sc-0.15Zr sample cast in QIC109
4.27	X-ray diffraction taken from the as-cast 0, 1.5, 3.5 and 6 Mg composite samples cast in QIC
4.28	Density variation (a) along the height and (b) transverse direction of the Al-6Mg-0.3Sc-0.15Zr alloy cast in QIC and CIC112
4.29	Microstructure at the (a) highest density and (b) lowest density region of the QIC sample, (c) and (d) frequently observed pores in CIC sample
4.30	Simulation result of the aluminium alloy showing the temperature profile of (a) CIC and (b) QIC116
4.31	Density variation with the % increase in rolling of (a) Al-6.0Mg-0.3Sc- 0.15Zr alloy (b) 3.5 Mg composite
4.32	DTA curves of (a) Al-0.3Sc-0.15Zr, (b) Al-6Mg-0.3Sc-0.15Zr, (c) Al-4.5Mg alloys and (d) Al-3.5Mg-0.3Sc-0.15Zr / (TiB_2) composite cast in QIC
4.33	Hardness variation with increase in Sc of the binary and ternary samples cast in RSM

4.34	Hardness variation of the ternary alloy cast in different mould during ageing at (a) 300 ^o C with time and (b) at 150, 300, 400, 500 and 600 ^o C for 2 hours
4.35	Percentage increase in hardness on ageing compared to as-cast hardness of Al-6Mg-0.3Sc-0.15Zr alloy cast in CIC and QIC (a) at 300° C and (b) softening curve at 400° C with time
4.36	Sketch of the (a) wedge shape cast sample is showing the variation in hardness (b) along the length and (c) transverse section of the Al-6Mg-0.3Sc-0.15Zr alloy cast in QIC129
4.37	Hardness variation of the composite samples with different Mg concentration cast in QIC during isothermal ageing at the temperature of (a) 300^{0} C (b) 400^{0} C and (c) as-cast, peak age and retained hardness at 400^{0} C
4.38	Sketch of the (a) wedge shaped cast sample is showing the variation in hardness (b) along the length and (c) transverse section of Al-3.5Mg- 0.3 Sc- 0.15 Zr/ $(TiB_2)_p$ composite cast in QIC133
4.39	The variation in hardness in lateral direction at 10, 20, 30 and 40% reduction in cold rolling of (a) as-rolled and ageing at 300° C of Al- 6.0Mg- 0.3Sc 0.15Zr alloy cast in (b) CIC and (c) QIC135
4.40	The hardness variation in lateral direction on ageing at 300° C of the Al- 6Mg-0.3Sc-0.15Zr alloy rolled at room temperature (RT), 150 and 250°C. The samples cast in (a) CIC and (b) QIC137
4.41	The variation in hardness at the lateral direction of 10, 20, 30 and 40% reduction in cold rolling of (a) as-rolled and ageing at 300° C of Al-3.5Mg- 0.3Sc 0.15Zr / (TiB ₂) _p composite cast in (b) CIC and (c) QIC139
4.42	The hardness variation in lateral direction on ageing at 300° C of the Al- 3.5Mg-0.3Sc-0.15Zr / (TiB ₂) _p composite rolled at room temperature (RT), 150 and 250°C. The samples cast in (a) CIC and (b) QIC140
4.43	Fractograph of the peak aged Al-6Mg-0.3Sc-0.15Zr alloy cast in (a) CIC (b) QIC
4.44	Fractograph of the peak aged (a) 0 Mg, (b) 1.5 Mg, (c) and (d) 3.5Mg and (e) & (f) 6 Mg composite cast in QIC147

4.45	The changes in (a) and (d) wear rate and (b) and (c) with distance of travel and increase in load respectively of Al-6Mg-0.3-Sc-0.15Zr alloy. The variation in (e) Co-efficient of friction is shown with increase in sliding distance of Al-6Mg-0.3-Sc-0.15Zr alloy
4.46	Worn out surface of peak aged Al-6Mg-0.3-Sc-0.15Zr alloy cast in (a) CIC (b) QIC152
4.47	With the increase in travel distance the variation in the (a) wear rate and (c) the cumulative volume loss (e) coefficient of friction of the composites cast in QIC. Increase in load the variation in the (b) wear rate and (d) the cumulative volume loss of the composites cast in QIC155
4.48	Worn out surface of peak aged sample of (a) 0Mg (b) 1.5 Mg, (c) and (d) 3.5Mg and (d) and (e) 6.0 Mg composites cast in QIC159
4.49	Influence of Mg on the polarization behavior of Al-0.3Sc-0.15Zr alloy in 3.5 wt% NaCl solution161
4.50	SEM micrograph of corroded surface of (a) 4.5Mg (b) 4.5Mg-0.3Sc-0.15Zr and (c) 6.0Mg-0.3Sc-0.15Zr alloy cast in QIC after immersion in 3.5 wt% NaCl solution for 6 hours163
4.51	Influence of Mg on the polarization behavior of TiB ₂ reinforced composite in 3.5 wt% NaCl solution cast in QIC165
4.52	SEM micrograph of corroded surface of Al-3.5Mg-0.3Sc-0.15Zr $/(TiB_2)_p$ composite cast in QIC after immersion in 3.5 wt% NaCl solution for (a) 6 (b) 24 and (c) 840 hours

xxviii