Chapte	er	Title	Page
		Title Page	i
		Certificate of Approval	ii
		Certificate by the Supervisor	iii
		Acknowledgements	iv
		Declaration	v
		List of Symbols	vi
		Abstract	Х
		Contents	xi
Ι		Introduction	1
	1.1	Organization of the thesis	5
	1.2	Thesis contribution	9
II		Review of Literature	11
	2.1	Crop substitution	11
	2.2	Potential of rainwater harvesting and recycling	12
	2.3	Feasibility of OFP in rainfed farming system	13
	2.4	Design of rainwater harvesting structure	13
	2.5	Inflow and outflow components of on-farm pond	15
	2.6	Water balance model of crop fields	18
	2.7	Components of field water balance model	19
	2.7.1	Seepage and percolation	19
	2.7.1.1	Vertical percolation	20
	2.7.1.2	Lateral seepage	21
	2.7.2	Actual evapotranspiration	22
	2.7.3	Surface runoff	23
	2.7.4	Root growth	23
	2.7.5	Irrigation management strategy for the crop fields	24
	2.8	Yield response to soil water	25
	2.9	Economics of OFP irrigation system	25
	2.10	Critiques of review of literature	27
ш		Need and Scope of Rainwater Harvesting of Rice and	29
111		Maize Fields in Rainfed Uplands	
	3.1	Introduction	29
	3.2	Methodology	29
	3.3	Study area	30
	3.3.1	Topography	30
	3.3.2	Soil	31
	3.3.3	Weather parameters	32
	3.4	Model development	34
	3.4.1	Concept of root-zone water balance model	35
	3.4.2	Onset of effective monsoon and withdrawal	37
	3.4.3	Modeling scenario-I	39
	3.4.4	Modeling scenario-II	40
	3.4.5	Root growth model	40
	3.4.6	Incremental root growth	41

CONTENTS

Chapter	r	Title	Page
	3.4.7	Actual evapotranspiration	41
	3.4.7.1	Bare soil evaporation during germination period	42
	3.4.7.2	Actual evapotranspiration during crop growth period	43
	3.4.7.2.1	Rice	43
	3.4.7.2.2	Maize	44
	3.4.7.3	Bare soil evaporation during turn-in period	45
	3.4.8	Seepage and percolation	45
	3.4.8.1	Percolation under ponding condition	47
	3.4.8.1.1	Development of deep percolation model in pre-beusan	47
	3.4.8.1.2	Deep percolation during post-beusan period	48
	3.4.8.2	Percolation in drying phase	49
	3.4.8.2.1	Percolation from active to passive layer	49
	3.4.8.2.2	Deep percolation from passive layer to below root-zone	51
	3.4.9	Seepage flux through dikes	52
	3.4.10	Surface runoff	53
	3.4.11	Model validation	55
	3.4.11.1	Field experiment	56
	3.4.11.2	Cultural operations	56
	3.4.11.3	Instruments used	57
	3.4.12	Measurement of water balance components	58
	3.4.12.1	Deep percolation and AET under ponding	58
	3.4.12.2	Deep percolation under unsaturated condition	59
	3.4.12.3	Soil moisture storage	60
	3.4.12.4	Surface runoff	60
	3.4.12.5	Seepage through dikes	60
	3.4.12.6	Actual evapotranspiration under unsaturated condition	61
	3.5	Model application	61
	3.6	Simulation technique	62
	3.7	Result and discussion	64
	3.7.1	Model validation	64
	3.7.1.1	Actual evapotranspiration	64
	3.7.1.2	Deep percolation in Pre-beusan period	65
	3.7.1.3	Deep percolation in Post-beusan period	66
	3.7.1.4	Seepage through dikes	66
	3.7.1.5	Soil moisture storage	67
	3.7.2	Days of ponding in initial stage	69
	3.7.3	Days of ponding/runoff generation during crop	70
	271	Bonding davis during final stage	72
	5.7.4 275	ronuing days during fillal stage Unsaturated soil moisture status during grop growing sooson	15
	5.7.5 3751	Rice field	74 77
	3750	Nee neu Maize field	14 75
	3.1.3.4 3.7.6	Maize netu Soil moisture status before sowing of winter crops	13 70
	5.7.0 2.9	Conclusions	70 70
	5.0		17

	Feasibility of On-Farm Pond for Various Crop	81
	Substitution Ratios in Rainfed Uplands	
4.1	Introduction	81
4.1.1	Partial crop substitution	81
4.1.2	Crop substitution ratio	82
4.1.3	Water harvesting potential	82
4.1.4	Methodology	83
4.2	Model formulation	84
4.2.1	Actual evapotranspiration	85
4.2.2	Vertical percolation	86
4.2.3	Seepage loss	86
4.2.4	Supplemental irrigation	86
4.2.4.1	SI to Rice during critical growth stage	87
4.2.4.2	SI to Rice before <i>beusan</i>	87
4.2.4.3	SI to maize during critical growth stage	88
4.2.5	Surface runoff	88
4.2.5.1	Surface runoff from rice compartment under ponding	88
126	Validation of model parameters	80
4.2.0	Experimental layout	80
4.3 4.3.1	Measurement of water balance components under irrigated	90
т.Ј.1	condition	70
4.3.1.1	Measurement of Deep percolation, AET and seepage	90
4.3.1.2	Supplemental irrigation	90
4.3.1.2.1	SI to rice during critical growth stage	92
4.3.1.2.2	SI to rice before <i>beusan</i>	92
4.3.1.2.3	SI to maize during critical growth stage	92
4.3.1.3	Surface runoff	92
4.4	Model application	93
4.5	Simulation technique	94
4.6	Results and Discussion	97
4.6.1	Validation of developed models	97
4.6.1.1	Actual evapotranspiration	97
4.6.1.2	Deep percolation	98
4.6.1.3	Seepage through field dikes	99
4.6.1.4	Soil moisture storage	100
4.6.2	Surface runoff and supplemental irrigation of sole	101
	maize and rice fields	
4.6.3	Surface runoff from various CSR	102
4.6.4	Supplemental irrigation requirement in various CSR	104
4.6.5	Stage-wise surplus/deficit of surface runoff under	105
	various CSR	
4.6.6	Water harvesting potential	108
4.7	Conclusions	109
	Sizing of Lined and Unlined On-Farm Ponds for various Cron Substitution Ratios	111
5.1	Introduction	111
~··	1114 0 440 41 011	111

V

5.1.1	Range of sizes of OFP	112
5.1.2	Location of the OFP	112
5.1.3	Lined and unlined OFP	112
5.1.4	Methodology	113
5.2	Model development	114
5.2.1	Water yield to OFP	114
5.2.1.1	Water yield from maize compartment	115
5.2.1.2	Water yield from rice compartment	116
5.2.2	Water balance model of the OFP	119
5.2.2.1	Volume of rainfall into OFP	120
5.2.2.2	Volume of surface runoff into OFP	120
5.2.2.3	Evaporation loss from the OFP	120
5.2.2.3.1	Model concept	121
5.2.2.3.2	Model development	121
5.2.2.3.3	Canopy growth model	122
5.2.2.3.4	Radiation interception	123
5.2.2.3.5	Evaporation loss model	124
5.2.2.4	Seepage loss from OFP	126
5.2.2.5	Spill over loss from the OFP	127
5.2.2.6	Irrigation management practice	127
5.2.2.6.1	Pre-sowing irrigation to winter crops	128
5.2.2.6.2	Supplemental irrigation to winter crops	128
5.2.2.7	Expected evaporation loss	128
5.2.2.8	Expected seepage loss	129
5.3	Evaluation of model parameters	130
5.3.1	Experimental layout	130
5.4	Simulation technique	131
5.5	Results and Discussion	135
5.5.1	Validation of models	135
5.5.1.1	Canopy growth on bamboo platform	135
5.5.1.2	Evaporation loss from the on-farm pond	136
5.5.1.3	Seepage loss from the unlined on-farm pond	137
5.5.2	Range of sizes of lined OFP for various CSR	138
5.5.3	Range of sizes of unlined OFP for various CSR	139
5.6	Conclusions	143
	Optimal Sizing of Lined and Unlined On-Farm Pond	145
6.1	Introduction	145
6.1.1	Necessity of sixty-forty crop substitution ratio	145
6.1.2	Methodology	146
6.2	Simulation of range of sizes of OFP for 60:40 CSR	146
6.3	Prediction of crop yield	147
6.4	Model development	148
6.4.1	Water balance model for irrigated crops in rainy season	148
6.4.2	Water balance model for rainfed crops in rainy season	148
6.4.3	Water balance model for irrigated crops in winter season	149
6.4.3.1	Water balance model for black gram	149

VI

6.4.3.1.1	Water management practices	149
6.4.3.2	Water balance model for mustard	150
6.4.3.2.1	Surface runoff	151
6.4.3.2.2	Water management practices	151
6.4.4	Water balance model for rainfed crops in winter	151
6.4.5	Water balance model of on-farm pond	152
6.5	Model application	152
6.6	Simulation technique	153
6.7	Prediction of yield using AET	153
6.7.1	Yield for non-rice crops	154
6.7.2	Yield for rice	154
6.8	Economic analysis	155
6.8.1	Initial investment	156
6.8.1.1	Cost of earthwork	156
6.8.1.1	Cost of lining	156
6.8.2	Variable cost	157
6.8.2.1	Annual variable cost	157
6.8.2.1.1	On-farm pond maintenance cost	157
6.8.2.1.2	Land lease cost	157
6.8.2.1.3	Irrigation cost	158
6.8.2.2	Quinquennial variable cost	158
6.8.2.2.1	Cost of bamboo platform	158
6.8.3	Production cost of crops	158
6.8.4	Annual returns	159
6.8.5	Present worth analysis	159
6.8.5.1	Cash outflow	159
6.8.5.2	Cash inflow	161
6.8.5.2.1	Present worth of net return due to irrigation	161
6.8.5.3	Net profit due to supplemental irrigation	162
6.8.5.4	Benefit-cost ratio	162
6.8.5.5	Internal rate of return	162
6.8.5.6	Pay back period	163
6.9	Simulation technique for optimal sizing of OFP	163
6.10	Results and Discussion	164
6.10.1	Optimal size of the lined on-farm pond	164
6.10.2	Optimal size of the unlined on-farm pond	170
6.10.3	Comparison between optimal size lined and unlined OFP	177
6.10.3.1	Supplemental irrigation	177
6.10.3.2	Crop yield	178
6.10.3.3	Net return	178
6.10.3.4	Surplus storage	178
6.11	Conclusions	179
	Field Experiments for Verification of Simulated Results	181
7.1	Introduction	181
7.2	Field experiment	181
7.2.1	Cultural operation	183

7.3	On-farm pond specification	185
7.3.1	Volume of storage in on-farm pond	189
7.3.2	Water spread area	189
7.4	Measurement of water balance components	190
7.4.1	Deep percolation, AET and seepage under ponding	190
7.4.2	Deep percolation under unsaturated condition	190
7.4.3	Soil moisture storage	190
7.4.4	Surface runoff	190
7.4.5	Supplemental irrigation	190
7.4.6	Actual Evapotranspiration under unsaturated phase	191
7.4.7	Determination of water balance components of OFP	191
7.4.7.1	Inflows into the on-farm pond	192
7.4.7.2	Outflows from the on-farm pond	192
7.4.7.2.1	Evaporation loss	192
7.4.7.2.2	Spill over loss from the on-farm pond	193
7.4.7.2.3	Seepage loss from the on-farm pond	193
7.5	Economic analysis of the optimal size on-farm pond	193
7.6	Results and Discussion	193
7.6.1	Soil moisture storage	193
7.6.1.1	Soil moisture storage during rainy season	194
7.6.1.1.1	Maize	194
7.6.1.1.2	Rice	194
7.6.1.2	Soil moisture storage during winter season	195
7.6.1.2.1	Black gram	195
7.6.1.2.2	Mustard	197
7.6.2	Actual evapotranspiration	198
7.6.2.1	AET of maize	198
7.6.2.2	AET of rice	199
7.6.2.3	AET of black gram	202
7.6.2.4	AET of mustard	205
7.6.3	Surface runoff	206
7.6.3.1	Excess runoff from maize to rice compartment	207
7.6.4	Deep percolation	209
7.8.4.1	Maize compartment	209
7.6.4.2	Rice compartment	209
7.6.5	Seepage loss	210
7.6.6	Supplemental irrigation	211
7.6.7	Crop yield	212
7.6.8	Water balance of on-farm pond	215
7.6.8.1	Rainfall contribution	216
7.6.8.2	Surface runoff contribution	217
7.6.8.3	Evaporation loss	218
7.6.8.4	Seepage loss	219
7.6.8.5	Supplemental irrigation from the on-farm pond	219
7.6.8.6	Spillover loss	220
7.6.9	Economics of the OFP irrigation	221

	7.6.9.1	Initial investment	221
	7.6.9.2	Variable cost	221
	7.6.9.3	Present worth of total variable cost	222
	7.6.9.4	Net returns from supplemental irrigation	222
	7.6.10	Economic feasibility of the OFP irrigation	223
	7.7	Conclusions	225
VIII		Conclusions and Recommendations	227
	8.1	Conclusions and recommendations	227
	8.2	Limitations of the thesis	230
References Appendix		231	
			243
Curric	ulum Vitae		