Content

Contents	Page no.
Title Page	i
Dedication	ii
Declaration	iii
Certificate by the supervisor	iv
Acknowledgement	V
List of abbreviations	vi
List of tables	viii
List of figures	ix
Contents	xiii
Abstract	xviii
Chapter 1: Introduction	1
1.1. Introduction	3
Chapter 2: Literature Review	5
2.1 Insect Viruses	7
2.1.1 General features	7
2.1.2 Historical Background	8
2.1.3 Families of viruses found solely or primarily in Insects	8
2.1.3.1 Baculoviridae	8
2.1.3.2 Nuclear Polyhedrosis Viruses	9
2.1.3.3 Granulosis Virus	10
2.1.3.4 Ascoviridae	10
2.1.3.5 Iridoviridae	11
2.1.3.6 Parvoviridae	11
2.1.3.7 Polydnaviridae	12
2.1.3.8 Poxviridae	12
2.1.3.9 Nodaviridae	13
2.1.3.10 Picornaviridae	13
2.1.3.11 Tetraviridae	13
2.2 Double stranded RNA viruses	14
2.2.1 Introduction	14
2.2.2 Life cycle of dsRNA Virus	15
2.2.3 Classification of Segmented double-stranded RNA (dsRNA) virus	17
2.2.3.1 Reoviridae	17
2.2.3.2 Birnaviridae	18
2.2.3.3 Totiviridae	18
2.2.3.4 Partiviridae	19
2.2.3.5 Hypoviridae	19
2.2.3.6 Cystoviridae	19
2.2.3.7 Chrysoviridae	20
2.2.4 Overview of dsRNA virus architecture	21
2.2.5 Structure of RNA dependent RNA polymerases	23
2.2.5.1 Structural domains and motifs of RdRps	25
2.2.5.1.1 Fingers subdomain	25
2.2.5.1.2 Palm subdomain	27

2.2.5.1.3 Thumb subdomain	28
2.2.6 RdRp Complexes	29
2.2.7 De novo and primer dependent initiation mechanism of RNA polymerase	31
2.2.8 Template requirements for initiation	32
2.2.9 Fidelity of RdRps	33
2.2.10 Inhibitors of RdRps	34
2.3 Cytoplasmic Polyhedrosis Viruses (CPVs)	34
2.3.1 Characteristics of CPVs	35
2.3.1.1 CPV Genome	35
2.3.1.2 Classification of CPVs	36
2.3.1.3 Virion Structure	36
2.3.1.4 Virus transmission and infection	37
2.3.1.5 Replication and morphogenesis	38
2.3.1.5.1 Attachment and uncoating	38
2.3.1.5.2 Viral transcription and genome replication	39
2.3.1.5.3 Viral protein and antigen synthesis	39
2.3.1.5.4 Occlusion body structure and polyhedrin crystallization.	40
2.3.1.6 Virus propagation and persistence	42
2.3.1.7 Immunological and molecular detection of CPV	44
2.3.2 Characteristics of different CPVs	45
2.3.2.1 BmCPV	45
2.3.2.2 DpCPV	47
2.3.2.3 LdCPV	47
2.3.2.4 TnCPV	48
2.3.3 Comparison of genome segment 2 of Cypoviruses in the family Reoviridae	49
2.3.4 CPV infecting non mulberry silkworm	50
2.4 Scope of the presentation	54
2.5 Aims and Objectives of the study	55

Chapter 3: Cloning and sequencing of genome segment 2 (S2) of A. mylitta cytoplasmic polyhedrosis virus (AmCPV)

57

3.1 Introduction	59
3.2 Materials and Methods	61
3.2.1 Silkworms and Viruses	61
3.2.2 Reagents, fine chemicals and enzymes	61
3.2.3 Radiolabeled compounds	61
3.2.4 Purification of polyhedral bodies	61
3.2.5 Isolation of double stranded genomic RNA	62
3.2.6 Quantification and analysis of dsRNA	62
3.2.7 Purification of AmCPV S2 RNA	62
3.2.8 Cloning of AmCPV S2 RNA into pCR-XL-TOPO vector	63
3.2.8.1 Synthesis of AmCPV S2 cDNA	63
3.2.8.2 Amplification of cDNA by PCR	64
3.2.8.3 Cloning of AmCPV S2 cDNA in pCR-XL-TOPO cloning vector	64
3.2.8.4 Selection of plasmids containing AmCPV S2 cDNA	65
3.2.9 Determination of nucleotide sequence of the cloned AmCPV S2 cDNA	65
3.2.9.1 Nucleotide sequence accession number	66
3.2.9.2 Computer assisted analysis of cDNA sequences	66
3.2.10 Modeling of AmCPV S2 encoded protein by PHYRE server	66
3.2.11 Phylogenetic analysis	69
3.2.12 Northern hybridization	69
3.2.12.1 Probe preparation by radioactive labeling	70
3.2.12.2 Prehybridization, hybridization, and autoradiography of the membrane	70

3.3 Results	71
3.3.1 Purification of polyhedral bodies	71
3.3.2 Analysis of the total and purified viral genomic dsRNA	72
3.3.3 Amplification of cDNA by PCR	72
3.3.4 Cloning of AmCPV S2 cDNA in pCR-XL-TOPO vector and selection of	73
recombinant plasmids	
3.3.5 Sequence analysis of AmCPV S2	73
3.3.6 Phylogenetic analysis	78
3.3.7 Northern Hybridization	78
3.3.8 Modeling of AmCPV S2 encoded protein	79
3.4 Discussion	81

Chapter 4: Expression and purification of AmCPV S2 encoded protein in bac and production of polyclonal antibody	cteria 83
4.1 Introduction	85
4.2 Materials and Methods	86
4.2.1 Reagents, fine chemicals and enzymes	86
4.2.2 Cloning of AmCPV S2 cDNA into prokaryotic expression vector pQE-30	86
4.2.2.1 PCR amplification of AmCPV S2 ORF	86
4.2.2.2 Digestion of DNA fragments and cloning in pQE-30 vector	86
4.2.2.3 Transformation of the recombinant plasmid in <i>E. coli</i>	87
4.2.2.4 Screening of recombinant AmCPV S2/PQE-30 plasmids	87
4.2.3 Overexpression of the recombinant AmCPV S2 encoded protein	88
4.2.3.1 Large scale production and purification of His-tagged recombinant AmCPV S2 encoded proteins from <i>E. coli</i>	88
4.2.3.2 Renaturation of denatured recombinant AmCPV S2 encoded proteins	89
4.2.4 Production of polyclonal antibody against <i>E. coli</i> expressed AmCPV S2 encoded protein in rabbit	90
4.2.4.1 Preparation of antigen	90
4.2.4.2 Immunization of rabbit	90
4.2.4.3 Enzyme linked immunosorbent assay (ELISA)	91
4.2.4.4 Purification of the polyclonal antibody	92
4.2.4.4.1 Precipitation of total IgG with saturated ammonium sulfate	92
4.2.4.4.2 IgG purification through protein A Sepharose chromatography	92
4.2.4.4.3 Anti AmCPV S2 IgG purification through antigen affinity chromatography	92
4.2.5 Expression of the RdRp domain of AmCPV S2 in <i>E. coli</i>	93
4.2.5.1 PCR amplification of RdRp domain of AmCPV S2	93
4.2.5.2 Cloning of AmCPV S2 RdRp domain in pQE-30 vector	93
4.2.5.3 Overexpression of the recombinant AmCPV S2 domain protein	94
4.3 Results	94
4.3.1 Cloning of AmCPV S2 ORF in bacterial expression vector	94
4.3.2 Optimization of insoluble expression of AmCPV S2 in E. coli	97
4.3.3 Production and purification of polyclonal antibody raised against <i>E. coli</i> expressed AmCPV S2 encoded protein	98
4.3.4 Cloning of AmCPV S2 RdRp domain in bacterial expression vector	100
4.3.5 Expression of AmCPV S2 RdRp domain in <i>E. coli</i>	100
4.4 Discussion	100

Chapter 5: Expression and purification of AmCPV S2 encoded protein in insect cells via baculovirus expression system 1 105

102

5.1 Introduction

5.2 Materials and Methods	107
5.2.1 Reagent and fine chemicals	108
5.2.2 Cloning of wild and mutant AmCPV S2 ORF into baculovirus transfer vector	108
pBlueBacHis2A	108
5.2.2.1 Amplification of wild type AmCPV S2 ORF by PCR and cloning into pBlueBac His 2A baculovirus transfer vector	108
5.2.3 Site directed mutagenesis of GDD motif of AmCPV S2 ORF and cloning into	
pBlueBacHis 2A baculovirus transfer vector	109
5.2.4 Cotransfection of Sf 9 cells with linearized baculovirus DNA and recombinant	111
transfer vector pBlueBacHis 2A containing wild and mutant AmCPV S2	111
5.2.5 Purification of recombinant baculovirus by plaque assay	110
5.2.6 Isolation of total DNA from recombinant baculovirus infected Sf 9 cells and	112
amplification of wild and mutant AmCPV S2 gene by PCR	113
5.2.7 Analysis of wild and mutant AmCPV S2 proteins by Western blotting	112
5.2.8 Large scale production of recombinant protein	113
5.2.9 Purification of baculovirus expressed His-tagged recombinant proteins	114
5.2.10 Analysis of purified wild and mutant baculovirus expressed AmCPV S2 proteins	114
by western blotting	114
5.3 Results	117
5.3.1 Cloning of wild and mutant AmCPV S2 ORF in baculovirus transfer vector	115
pBlueBacHis 2A	115
5.3.1.1 Amplification of wild type AmCPV S2 ORF by PCR	115
5.3.1.2 Site directed mutagenesis of GDD motif of AmCPV S2 ORF by overlapping extension PCR method	115 116
5.3.1.3 Cloning of wild and mutant AmCPV S2 ORF into baculovirus transfer vector pBlueBacHis 2A	116
5.3.2 Generation of recombinant baculovirus plaques by cotransfection of <i>Sf</i> 9 cells with linearized baculovirus DNA and recombinant transfer vector containing wild	117
and mutant pBlueBacHis 2A/AmCPV S2	
5.3.3 Isolation of total DNA from recombinant baculovirus infected <i>Sf</i> 9 cells and	
amplification of wild and mutant AmCPV S2 gene by PCR	118
5.3.4 Western blot analysis of wild and mutant AmCPV S2 gene by FCK	-
cells	119
5.3.5 Large scale production and purification of baculovirus expressed His-tagged	
recombinant proteins	120
5.4 Discussion	121
Chapter 6: Functional and biophysical characterization of AmCPV S2 encoded	
RNA dependent RNA polymerase	123
6.1 Introduction	125
6.2 Materials and Methods	125
6.2.1 Fine chemicals and reagents	
6.2.2 Preparation of RNA template by <i>in vitro</i> transcription	127
6.2.2.1 Primer designing to attach T7 and SP6 promoter site to the cDNAs	127
corresponding to 5'(+), 3'(-) and 3'(+) strand RNAs	127
6.2.2.2 PCR amplification and purification of the amplified PCR products	100
6.2.2.3 <i>In vitro</i> transcription to generate RNA templates	128

- 6.2.3 RNA dependent RNA polymerase (RdRp) assay 6.2.3.1 RdRp assay using a homopolymeric template
 - 6.2.3.2 Determination of the optimum conditions for the AmCPV RdRp activity 129

128

129

6.2.3.3 Primer independent RNA synthesis using AmCPV S2 minigenome	129
6.2.3.4 Terminal transferase (TNTase) activity assay	
6.2.3.5 Determination of elongation rate of AmCPV S2 encoded RdRp	130
6.2.4 Biophysical Characterization of purified AmCPV S2 encoded protein	131
6.2.4.1 Circular dichroism analysis of wild and mutant AmCPV S2 encoded proteins	131
6.2.4.2 Fluorescent anisotropy measurement of wild and mutant AmCPV S2 encoded	131
proteins	
6.2.4.3 Thermal denaturation study	132
6.2.4.4 Denaturation kinetics study	132
6.2.4.5 Urea denaturation study	132
6.3 Results	132
6.3.1 In Vitro transcription to produce single stranded AmCPV minigenomic RNA	132
6.3.2 Primer dependent RNA synthesis by AmCPV S2 encoded protein using poly (A)	133
RNA template	
6.3.3 Optimal conditions for RNA synthesis by AmCPV S2 encoded protein	134
6.3.4 Primer independent RNA synthesis using AmCPV S2 minigenome	136
6.3.5 RdRp activity of the wild and the mutated AmCPV S2 encoded proteins	138
6.3.6 TNTase activity	138
6.3.7 Effect of inhibitors of RdRp activity	139
6.3.8 Determination of elongation rate	140
6.3.9 Biophysical Characterization of purified AmCPV2 encoded protein	140
6.3.9.1 Circular dichroism analysis of wild and mutant AmCPV S2 encoded proteins	140
6.3.9.2 Fluorescent anisotropy measurement of wild and mutant AmCPV S2 encoded	141
proteins	
6.3.9.3 Thermal denaturation study	144
6.3.9.4 Denaturation kinetics study	142
6.3.9.5 Urea denaturation study	143
6.4 Discussion	144
Chapter 7: Summary and Future Scope of Work	147
7.1 Summary and Future Scope of Work	149
7.2 Scope of Future Investigation	151
References	153
	155
Curriculum vitae	