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Chapter 1

Introduction

1.1 Introduction

The great mathematician Euler once remarked that “nothing at all takes place

in the universe in which some rule of maximum or minimum does not appear”.

Though it is an extreme statement, it has been observed that a large class of

problems in science, engineering, economic, etc. can be represented through

the following optimization problem,

(P ) min f(x)

subject to g(x) ≤ 0

x ∈ M

where f, g = (g1, . . . , gm) are real valued functions on Rn, M ⊆ Rn. The

problem (P ) as a whole is known as “Nonlinear Programming Problem” if at

least one of f, g1, . . . , gm is a nonlinear function.
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The central concept in optimization is known as the duality theory which

asserts that, given a (primal) minimization problem, the infimum value of the

primal minimization problem cannot be smaller than the supremum value of

the associated (dual) maximization problem and the optimal values of the pri-

mal and dual problem are equal under certain conditions. Duality principle is

based on the geometric relation, which states that the shortest distance from

a point to a convex set is equal to the maximum of the distances from the

point to a hyperplane separating the point from the set. Hence the original

minimization problem over vectors can be converted to a maximization prob-

lem over hyperplanes. This result is more applicable in several computational

applications where the choice is often made so that evaluating the dual maxi-

mum is comparatively easier than solving a primal minimization problem. In

general, a dual problem for a nonlinear programming problem is not defined

uniquely and duality is not a reciprocal relation. Thus except in the linear

programming case, the dual of a dual need not be primal for general nonlinear

programming problems. This has led to introduce several forms of dual for a

nonlinear programming problem.

The convexity of sets and the convexity of functions have been the object

of many investigations during the past century. This is mainly due to the

development of the theory of mathematical programming, both linear and

nonlinear, which is closely tied with convex analysis. Optimality conditions

and duality were mainly established for classes of problems involving the op-

timization of convex objective functions over convex feasible regions. In the

second half of the past century various generalizations of convex functions
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have been introduced. One of the most important generalization of convex

functions are the invex functions which were initially employed by Hanson [48]

and Craven [22]. Usually, generalized convex functions have been introduced

in order to weaken as much as possible the convexity requirements for results

related to optimization theory (in particular, optimality conditions and dual-

ity results). In the classical theory of optimization, the results on sufficient

optimality conditions and duality are based on convexity assumption which is

rather restrictive in application. An important feature in the use of convexity

is that local optimal solution implies global optimal solution. But a number

of problems arising in real world are not convex programming problem by

nature. Generally it is not easy to handle such types of problems. Though

it is analytically tough to solve these general nonconvex problems, yet many

attempts are being made in this direction to justify zero duality gap between

primal and dual nonlinear programming problems using generalized convexity

assumptions by many researchers like Mangasarian, Mond, Bector, Hanson,

Jeyakumar etc.

There are many real world situations where most of the information are im-

precise in nature involving vagueness due to the presence of linguistic data.

In the context of optimization problems the various parameters involved in

the objective function or constraints or both have such type of uncertain-

ties. These types of optimization problems can be handled by using fuzzy set

theory introduced by Zadeh(1965). The use of fuzzy set theoretic concepts

in optimization problem is known as fuzzy optimization. This is one of the

emerging areas of application of fuzzy mathematics in decision science. The
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decision making problem in fuzzy environment was introduced by Bellman and

Zadeh [9] in 1970. It has been developed by many researcher like Zimmer-

mann [103,104], Tanake [87], Rammelfanger [78], Bector and Chandra [8] etc.

in various directions. Very less work has been done to study the optimality

condition and duality relationship for fuzzy linear and nonlinear programming

problem.

This thesis deals with the optimality and duality results of general nonlinear

programming problem and fuzzy nonlinear programming problem in following

three broad categories.

1. Development of differentiable E-convexity, generalized E-convexity con-

cept and its application in duality theory for general nonlinear program-

ming problem. (Chapters 2, 3 and 4)

2. Study of duality results for Lagrange dual, Fenchel dual and Fenchel-

Lagrange dual and second order duals results using convexity and E-

convexity . (Chapter 5 and 6)

3. Study of duality results for fuzzy nonlinear programming problem using

convexity and E-convexity . (Chapter 7 and 8 )

Before we present the chapter wise brief summary of the results derived

in the thesis, we collect some recent literature on optimization theory involv-

ing convex, invex, generalized convex, generalized invex functions, E-convex

functions and some basic concepts of fuzzy set theory in next two sections.
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1.2 Prerequisites

Karush [64] in 1939 and Kuhn and Tucker [68] in 1951 introduced Karush-

Kuhn-Tucker(KKT) conditions which are necessary and sufficient condition

for the existence of solution of a convex nonlinear programming problem. We

state the KKT condition below.

Theorem 1.1. (Necessary KKT Conditions) Consider the problem (P ) with
M open. Suppose f : Rn → R and g : Rn → Rm are real valued differen-
tiable functions. Let x0 be a local minimum to (P ). Moreover assume that
∇gi(x0), i ∈ I forms a linearly independent set of vectors in Rn. Then there
exists u ∈ Rm

+ such that

(i) ∇f(x0) +
m

∑

i=1

ui∇gi(x0) = 0

(ii) uigi(x0) = 0.

The KKT conditions are also sufficient if we assume that f, g1, . . . , gm are

convex functions and M is a convex set.

Theorem 1.2. (Sufficient KKT Conditions) Consider the problem (P ) with
M open. Suppose f : Rn → R and g : Rn → Rm are real valued differentiable
functions. f and g are convex at x0 ∈ M. If (x0, u) ∈ M × Rm

+ satisfy the
following system

(i) ∇f(x0) +

m
∑

i=1

ui∇gi(x0) = 0

(ii) uigi(x0) = 0

then x is local optimal solution of (P ).

Definition 1.1 (80). A nonempty subset M of Rn is said to be convex set if
(1 − λ)x + λy ∈ M for all x, y ∈ M and all λ ∈ [0, 1].

Definition 1.2 (80). Let M be a nonempty subset of Rn. A function f :
M → R is said to be convex on M if M is a convex set and

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y)

for all x, y ∈ M and all λ ∈ [0, 1].
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Definition 1.3 (80). A differentiable function is convex if and only if

f(x) − f(y) ≥ ∇f(y)(x− y) ∀ x, y ∈ M.

Definition 1.4 (70). Let f : Rn → R be a twice differentiable function on
an open set M ⊂ Rn. f is convex on M if and only if ∇2f(x) is positive
semidefinite on M, that is, for each x ∈ M

y∇2f(x)y ≥ 0 for all y ∈ Rn

Definition 1.5 (73). Let M be a nonempty open subset of Rn. Suppose f :
Rn → R is a twice differentiable function M. Then f is said to be second order
convex on M if

f(x)− f(y) ≥ (∇f(y))T (x− y) +
1

2
(x− y)T∇2f(y)(x− y) for all x, y ∈ M.

The first step in relaxing the convexity assumption was taken by Man-

gasarian [70], who introduced the notion of pseudoconvex and quasiconvex

functions.

Definition 1.6 (70). A differentiable function f : M → R is called pseudo-
convex if given x, y ∈ M

∇f(y)(x− y) ≥ 0 ⇒ f(x) ≥ f(y)

and quasi-convex if

f(x) ≤ f(y) ⇒ ∇f(y)(x− y) ≤ 0.

In 1981, Hanson [48] observed that term (x− y), on the right hand side of

the inequality in Definition 1.3, plays no role in the proof of the sufficiency of

the Karush-Kuhn-Tucker conditions. This motivated Hanson [48] to introduce

a class of differentiable functions f : M → R which satisfy

f(x) − f(y) ≥ ∇f(y)η(x, y) ∀ x, y ∈ Rn,
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where η : Rn × Rn → Rn is any arbitrary function. If η(x, y) = x − y then

f becomes a convex function. Hanson [48] proved that the KKT conditions

are also sufficient if the objective and constraint functions satisfy the above

inequality with same function η. Later, Craven [20] called this class of func-

tions as invex functions. Invex function was further revealed when Hanson

[48] showed that invex functions could replace convex functions to prove the

strong duality theorem for the Wolfe’s dual. For defining an invex function we

need the notion of differentiability. A relevant generalization of convex func-

tion without assuming differentiability is the following notion of a preinvex

function which was first put forward by Ben-Israel and Mond [10] and later

on by Weir and Mond [94], Hanson and Mond [51] and Pini [77].

Definition 1.7 (10). A set M ⊆ Rn is said to be invex with respect to η :
Rn × Rn → Rn if y + λη(x, y) ∈ M, ∀ x, y ∈ M, ∀ λ ∈ [0, 1].

Definition 1.8 (10). Let M ⊆ Rn be an invex set with respect to η : Rn ×
Rn → Rn. A function f : M → R is said to be preinvex with respect to η on
M if

f(y + λη(x, y)) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ M and all λ ∈ [0, 1].

Another relevant generalization of convex sets and convex functions is the

notion of E-convex set and E-convex functions which is defined by Youness

[99] in 1999. This kind of generalized convexity is based on the effect of an

operator E on the sets and domain of definition of the functions. Youness

[99] established the optimality results for E-convex programming problems.

Yang [98] and Chen [17] modified the results of Youness [99] on E-convex

programming problem.
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Definition 1.9 (99). Let E : Rn → Rn. A nonempty subset M of Rn is
said to be E-convex set if (1 − λ)E(x) + λE(y) ∈ M for all x, y ∈ M and all
λ ∈ [0, 1].

Definition 1.10 (99). Let M be a nonempty subset of Rn and E : Rn → Rn.
A function f : M → R is said to be E-convex on M if M is an E-convex set
and

f((1 − λ)E(x) + λE(y)) ≤ (1 − λ)f(E(x)) + λf(E(y))

for all x, y ∈ M and all λ ∈ [0, 1].

Lemma 1.1 (99). If a set M ⊆ Rn is E-convex, then E(M) ⊆ M.

Chen [17] introduced a new class of semi-E-convex functions and studied

some of its properties.

Definition 1.11 (17). Let M ⊆ Rn be an E-convex set and E : Rn → Rn. A
function f : M → R is said to be semi-E-convex on M if

f(λE(x) + (1 − λ)E(y)) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ M and all λ ∈ [0, 1].

Definition 1.12 (17). Let M ⊆ Rn be an E-convex set. A function f : M →
R is said to be semi-E-quasiconvex on M if

f(λE(x) + (1 − λ)E(y)) ≤ max{f(x), f(y)}

for all x, y ∈ M and all λ ∈ [0, 1].

Syau and Lee [86] defined E-quasi convex function, strictly E-quasi convex

function and studied some basic properties.

Definition 1.13 (86). Let M ⊆ Rn be an E-convex set. A function f : M →
R is said to be E-quasiconvex on M if

f(λE(x) + (1 − λ)E(y)) ≤ max{f(E(x)), f(E(y))}

for all x, y ∈ M and all λ ∈ [0, 1], and strictly E-quasiconvex if strict
inequality holds for all x, y ∈ M , E(x) 6= E(y) and λ ∈ [0, 1].
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Lemma 1.2 (86). Let f and g be E-convex functions on M and let α > 0.
Then f + g and αf are E-convex functions on M .

Lemma 1.3 (86). Suppose that E(M) is a convex set. Then f : M → R is
E-convex (respectively strictly E-convex) if and only if its restriction,
f̃ : E(M) → R is a convex (respectively strictly convex) function.

One of the most fruitful theories of duality in convex optimization is based

on the concept of conjugate function. This concept was due to Fenchel [34]

and Rockfellar [80] in the finite dimensional case. Here we present some basic

results due to Rockafellar, Fenchel, Bazaraa, Sherali , Shetty et al. which

are used in Chapters 5 and 6 to study the duality results for Lagrange dual,

Fenchel dual and Fenchel-Lagrange dual.

Definition 1.14 (80). The function f ∗ : Rn → R, defined by

f ∗(p∗) = sup
x∈Rn

{p∗T x − f(x)}

is called as the conjugate function of f : Rn → R.

Lemma 1.4 (80). Let C1 and C2 be non-empty sets in Rn. There exists a
hyperplane separating C1 and C2 properly if and only if there exists a vector b

such that
(a) inf{xT b| x ∈ C1} ≥ sup{xT b| x ∈ C2},
(b) sup{xT b| x ∈ C1} > inf{xT b| x ∈ C2}.
There exists a hyperplane separating C1 and C2 strongly if and only if there
exists a vector b such that
(c) inf{xT b| x ∈ C1} > sup{xT b| x ∈ C2}.

Lemma 1.5 (80). Let C1 and C2 be non-empty convex sets in Rn. In order
that there exists a hyperplane separating C1 and C2 properly, it is necessary
and sufficient that rintC1 and rintC2 have no point in common. ( rintC1 and
rintC2 are the relative interiors of C1 and C2)

Lemma 1.6 (7). Let S be a nonempty convex set in Rn and x ∈ intS. Then
there is a nonzero vector p such that pT (x − x) ≤ 0 for each x ∈ clS.
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Lemma 1.7 (7). Let X be a nonempty convex set in Rn. Let α : Rn → R

and g : Rn → Rm be convex, and let h : Rn → R be affine; that is, h = Ax−b.
If System 1 below has no solution x, then System 2 has a solution (u0, u, v).
The converse holds if u0 > 0.
System 1: α(x) < 0 g(x) ≤ 0 h(x) = 0 for some x ∈ X

System 2: u0α(x) + uTg(x) + vT h(x) ≥ 0 for all x ∈ X

(u0, u) ≥ 0, (u0, u, v) 6= 0.

In Chapters 7 and 8, we have derived duality results for the fuzzy nonlinear

programming problem (FNP ). In a fuzzy nonlinear programming problem

(FNP ) fuzziness is present in the objective function or in the constraints

or in both, either in terms of fuzzy variables or in terms of fuzzy inequali-

ties. Here the fuzzy nonlinear programming problem with fuzzy inequalities

is considered. Now we quote some definitions of fuzzy set theory.

Definition 1.15 (106). If X is a collection of objects denoted generically by
x then a fuzzy set Ã in X is a set of ordered pairs:

Ã = {(x, µ̃Ã(x))|x ∈ X},

µ̃Ã(x) is called the membership function or grade of membership of x in Ã

which maps X to the membership space (M = [0, 1]). (When M contains
only the two points 0 and 1, Ã is nonfuzzy and µ̃Ã(x) is identical to the
characteristic function of a nonfuzzy set.)

In this thesis we have used the fuzzy inequality due to Zimmermann

[103,104].

Definition 1.16. [Inequality due to Zimmermann [103,104]: This is a fuzzy
partial order relation between two real numbers. The fuzzy inequality a �
b, a, b ∈ R, where � is the fuzzified version of ≤, is a fuzzy set whose mem-
bership function µ̃(a � b) is defined by

µ̃(a � b) =







1 a ≤ b
b+α−a

α
b ≤ a ≤ b + α

0 a ≥ b + α
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where α is the tolerance limit for the inequality a � b at b.

Similarly the membership function for the inequality a � b can be defined as

µ̃(a � b) =







1 a ≥ b
a−b+β

β
b − β ≤ a ≤ b

0 a ≤ b − β

where β is the tolerance limit for the inequality a � b at b.

Throughout the thesis we have considered Lagrange dual(DL), Fenchel

dual(DF ), Lagrange Fenchel dual(DFL), Wolfe’s first order dual(WD), Mond

Weir first order dual(MD), Wolfe’s second order dual(WD2), Mond Weir

second order dual(MD2) etc. corresponding to the primal problem (P ) as

mentioned below.

(

DL

)

sup
q∗≥0

inf
x∈Rn

[f(x) + q∗T g(x)]

(

DF

)

sup
p∗∈Rn

[−f ∗(p∗) + inf
x∈Rn, g(x)≤0

p∗T x]

(

DFL

)

sup
p∗∈Rn, q∗≥0

[−f ∗(p∗)+ inf
x∈Rn

[p∗T x+q∗T g(x)]]

(MD) max
y,u

f(y)

subject to ∇[f(y) + uTg(y)] = 0

uTg(y) ≥ 0, u ≥ 0.

(MD2) max
y,u,p

f(y) − 1
2
pT∇2f(y)p

subject to ∇[f(y) + uT g(y)] + ∇2[f(y) + uTg(y)]p = 0

uTg(y) − 1
2
pT∇2[uT g(y)]p ≥ 0, u ≥ 0.

(WD) max
y,u

f(y) + uTg(y)

subject to ∇[f(y) + uTg(y)] = 0, u ≥ 0

11
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(WD2) max
y,u,p

f(y) + uT g(y)− 1
2
pT∇2[f(y) + uT g(y)]p

subject to ∇[f(y) + uT g(y)] + ∇2[f(y) + uT g(y)]p = 0

Vector Inequalities:

The following convention for vector relation are used throughout the thesis.

If x, y ∈ Rn, then

x ≥ y ⇔ xi ≥ yi, for i = 1, 2, . . . , n.

x = y ⇔ xi = yi, for i = 1, 2, . . . , n.

x > y ⇔ xi > yi, for i = 1, 2, . . . , n.

1.3 Literature Survey

In the thesis we have discussed duality results for three types of nonlinear

programming problems based on:

1. generalized E-convexity,

2. Fenchel-Lagrange duality,

3. duality for fuzzy nonlinear programming problem.

1.3.1 On generalized E-convexity

In 1999, Youness [99] introduced E-convex function and studied E-convex

programming problem. Some of his important results related to E−convex

programming proved by Youness, are given below.
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Theorem 1.3. Assume that E(M) is convex and x is a solution of the fol-
lowing problem:

(PE) min (f ◦ E)(x)

subject to g(x) ≤ 0

x ∈ M , M = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , m}

Then, E(x) is a solution of problem (P ).

Theorem 1.4. Let E(M) be a convex set. If x0 = E(z0) ∈ E(M) is a local
minimum of Problem (P ) on M, then x0 is global minimum of problem (P )
on M.

Theorem 1.5. Assume that E(M) is a convex set and f is strictly E-convex.
Then, the solution of Problem (PE) considered in Theorem 1.4, is unique.

Theorem 1.6. Let E(M) be a convex set and let f ◦E, gi ◦E, i = 1, 2, . . . , m,

be differentiable on M. Assume that (x∗, y∗) is a solution of the following
problem:

∇[(f ◦ E)(x∗) + 〈y∗, (gi ◦ E)(x∗)〉] = 0,

〈y∗, (gi ◦ E)(x∗)〉 = 0,

(g ◦ E)(x∗) ≤ 0, y ≥ 0.

Then, E(x∗) is an optimal solution of problem (P ).

Chen [17] defined semi-E-convex function, quasi-semi-E-convex function,

pseudo-semi-E-convex function, logarithmic E-convex function, slack 2-convex

set and modified the results of Youness [99] on E-convex programming prob-

lem. Some of his important results are given below.

Theorem 1.7. If x0 ∈ M is a fixed point of the mapping E : Rn → Rn i.e.
x0 = E(x0) and x0 is a local minimum of the problem (P ) on an E-convex
set M, and f : Rn → R is semi-E-convex on the set M, then x0 is global
minimum of problem (P ) on M.

Theorem 1.8. If x0 ∈ M is a fixed point of the mapping E : Rn → Rn i.e.
x0 = E(x0) and x0 is a local minimum of the problem (P ) on an E-convex set
M, and f : Rn → R is pseudo-semi-E-convex on the set M , then x0 is global
minimum of problem (P ) on M.
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Theorem 1.9. Assume function f : Rn → R is a strongly quasi-semi- E-
convex on a set M ⊆ Rn, then the global optimal solutions of problem (P ) is
unique.

Theorem 1.10. Let M be a nonempty subset of Rn , E : Rn → Rn be
function, and let f : Rn → R be pseudo-semi-E -convex on E-convex set
M ⊆ Rn , u ∈ M be fixed point of map E i.e.u = E(u) and

〈f
′

(E(u)), (E(v) − E(u))〉 ≥ 0, ∀ v ∈ M.

Then u is a minimum of function f on M.

Syau and Lee [86] defined E-quasiconvex function, strictly E-quasiconvex

function and studied nonlinear programming problem using these generalized

E-convex functions. Some of their important results are given below.

Theorem 1.11. Suppose that f : Rn → R is E-quasiconvex, then the set of
solutions of problem (P ) is convex.

Theorem 1.12. Suppose that
(1) f : Rn → R is E-quasiconvex;
(2) x is a strict local minimizer of (P ).
Then x is also a strict global minimizer of (P ).

Theorem 1.13. Suppose that
(1) f : Rn → R is E-convex;
(2) x is a local minimizer of (P ).
Then x is also a global minimizer of (P ).

Theorem 1.14. Suppose that f : Rn → R is strictly E-quasiconvex.
(1) If x is a local minimizer of (P ), then it is also a global minimizer.
(2) f attains it minimum over X at no more than one point.

Duca and Lupsa [32] proved some characterizations of E-convex function

using a different notion of epigraph. Some of his important results are as

follows.

Theorem 1.15. Let M be a nonempty subset of Rn and let f : M → R and
E : Rn → Rn be two functions. If M is an E-convex set and epiE(f) is a
convex set, then f is an E-convex function on M.

14



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Theorem 1.16. Let M be a nonempty subset of Rn and let f : M → R and
E : Rn → Rn be two functions. If M is an E-convex set, E(M) is a convex
set, and epiE(f) is a slack 2-convex set with respect to E(M) × R, then f is
an E-convex function on M.

Theorem 1.17. Let M be a nonempty subset of Rn and let f : M → R and
E : Rn → Rn be two functions. Assume that M is an E-convex set and E(M)
is a convex set. Then, f is an E-convex function on M if and only if epiE(f)
is a slack 2-convex set with respect to E(M) × R.

Fulga and Preda [36] defined E-preinvex function and E-prequasiinvex

function where differentiation was not required and studied nonlinear pro-

gramming problem using these generalized E-invex functions.Some of his im-

portant results are given below.

Theorem 1.18. Let fj : Rn → R, j = 1, . . .m, be E-prequasiinvex functions
on Rn; E(Rn) an invex set and the set of feasible solutions nonempty set.
Then the set of optimal solutions of the problem is invex.

Theorem 1.19. Let f0 : Rn → R be a strict E-prequasiinvex function on
Rn, fj : Rn → R, j = 1, . . .m, E-prequasiinvex functions on Rn, E(Rn) an
invex set and the set of feasible solutions is a nonempty set. If x∗ is a local
minimum point of the problem then x∗ is a strict global minimum point of the
problem.

All the above authors have defined different types generalized E-convex

functions without using differentiability. In Chapter 2, 3, 4, we have defined

E-convex function, E-invex, E-quasiinvex function, E-pseudoinvex function,

semi-E-invex function, semi-E-quasiinvex function, semi-E-pseudoinvex func-

tion etc. with differentiability assumption and studied nonlinear programming

problem using these generalized E-convex functions with differentiability. In

this respect our result is different from our predecessors.

15



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.3.2 On Fenchel-Lagrange duality

Lagrange dual (DL), Fenchel dual (DF ), Fenchel-Lagrange dual (DFL) are

constructed using the concept of conjugate function due to Fenchel [34] and

Rockfellar [80] in the finite dimensional case. Duality results for Lagrange

dual, Fenchel dual and Fenchel-Lagrange dual were studied by Wanka and Bot

[89] using convexity. Wanka and Bot [89] have proved the following duality

results using convexity assumption.

sup(DL) ≥ sup(DFL) , sup(DF ) ≥ sup(DFL)

inf(P ) = sup(DL) = sup(DF ) = sup(DFL)

All convex functions are not necessarily E-convex on the same domain. If

f is an E−convex function then it is not necessarily true that f ◦ E is a

convex function. This motivated us to construct an E−convex programming

problem for which these duality results can be applicable. We have established

a relation between the solution of a general nonlinear programming problem

and a general E−convex programming problem and studied duality results

for Lagrange dual, Fenchel dual and Fenchel-Lagrange dual for E−convex

programming problem in Chapter 5. In case E(x) = x, our duality results

reduce to duality results with convexity.

Study of second order dual is important due to its computational advan-

tage over first order dual as its provides tighter bound to the value of the

objective function. Second order duality results for Wolfe’s dual, Mond Weir

dual etc. are studied earlier. But second order duality results for Fenchel

dual and Fenchel-Lagrange dual has not been studied yet. In chapter 6, we
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have constructed second order Lagrange dual, Fenchel dual, Fenchel-Lagrange

dual of a general nonlinear programming problem and studied the primal dual

relation using convexity and E−convexity assumptions.

1.3.3 On fuzzy nonlinear programming problem

Duality for the fuzzy linear programming was first introduced by Rodder and

Zimmerman [83] and then further modified by many researchers like Sakawa

[84], Wu [97], Zhang and Lee [101], Bector and Chandra [8] etc., in differ-

ent directions. Also few developments have been made in the area of duality

for fuzzy nonlinear programming problems to study the primal dual relation-

ship using different methodologies. Sakawa and Yano [84] proposed a fuzzy

dual decomposition method to solve multi objective nonlinear programming

problems using Lagrangian multipliers. Zhang, Yuan and Lee [101] used the

concept of derivatives for convex fuzzy mapping and developed the neces-

sary and sufficient optimality condition for the existence of solution for fuzzy

mathematical programming using Lagrangian dual function which is paral-

lel to KKT condition in crisp case. Recently Wu [97] defined fuzzy valued

Lagrange function and proved that the primal and dual fuzzy mathematical

programming problems have no duality gap under suitable convexity assump-

tion. But the development in the contest for fuzzy nonlinear programming

problem is not enough yet. All the above authors have considered the fuzzy

nonlinear programming problem with uncertainties in the form of fuzzy val-

ued function or fuzzy coefficients. They have not used aspiration level for the

objective function and constraints in a fuzzy nonlinear programming problem
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as consider by Bector and Chandra [8] for fuzzy linear programming prob-

lem. Bector and Chandra [8] have studied the duality results for fuzzy linear

programming problem by converting fuzzy linear programming problem to its

crisp equivalent ((CFLP ) and (CFLD))which we have discussed in Chapter

7 in detail. Some important results of Bector and Chandra [?] are given below.

Theorem 1.20. (Modified weak duality). Let (x, λ) be (CFLP )-feasible and
(w, η) be (CFLD)-feasible. Then,

(λ − 1)pT w + (η − 1)qT x ≤ (bT w − cT x).

Theorem 1.21. Let (x̂, λ̂) be (CFLP )-feasible and (ŵ, η̂) be (CFLD)-feasible
such that
(i)(λ̂ − 1)pT ŵ + (η̂ − 1)qT x̂ = (bT ŵ − cT x̂),
(ii)(λ̂ − 1)p0 + (η̂ − 1)q0 = (cT x̂ − bT ŵ) + (bT w0 − cT x0) and
(iii) the aspiration levels cT x0 and bT w0 satisfy (cT x0 − bT w0) ≤ 0.
Then (x̂, λ̂) is (CFLP )-optimal and (ŵ, η̂) is (CFLD)-optimal.

We have borrowed the idea of Bector and Chandra [8] to study the duality

results for fuzzy nonlinear programming problem.

In Chapter 7, we have introduced fuzzy feasible region which is completely

a new concept. Using this concept we have studied Lagrange duality results

for fuzzy nonlinear programming problem where the objective function and

constraint functions are associated with some aspiration levels. In Chapter

8, we have constructed Wolfe’s first and second order dual of fuzzy nonlinear

programming problem and studied duality results for fuzzy nonlinear pro-

gramming problem using convexity and E-invexity assumption.
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1.4 Important results of the thesis

Optimality and duality results for nonlinear programming problem using con-

vexity and generalized convexity are studied by many researchers during last

few decades. In Chapters 2, 3 and 4, we have introduced E-convexity, E-

invexity and its generalization for a differentiable function. Also we have

studied the optimality and duality results for a nonlinear programming prob-

lem and its dual using E-invexity and generalized E-invexity assumption.

Chapter 2

In this chapter differentiable E-convex and semi-E-convex functions are intro-

duced. The sufficient optimality condition for the existence of local optimum

of a nonlinear programming problem under semi-E-convexity is derived and

the results are verified through numerical examples. Some of the important

results of this chapter are given below.

Theorem 1.22. Let M ⊆ Rn, E : Rn → Rn be a homeomorphism. If
f : M → R has a local minimum point in the neighborhood of E(x), then f is
E-convex at x.

Theorem 1.23. Let M be a nonempty open E-convex subset of Rn, f : M →
R and E : Rn → Rn are differentiable functions. Let E be a homeomorphism.
Then f is E-convex at x ∈ M if and only if

(f ◦ E)(x) ≥ (f ◦ E)(x) + (∇(f ◦ E)(x))T (E(x) − E(x))

for all E(x) ∈ Nǫ(E(x)) where Nǫ(E(x)) is ǫ-neighborhood of E(x), ǫ > 0.

Theorem 1.24. Let M be a nonempty open E-convex subset of Rn, f : M →
R and E : Rn → Rn are differentiable functions. Let E be a homeomorphism
and x be a fixed point of E. Then f is semi-E-convex at x ∈ M if and only if

f(x) ≥ f(x) + (∇(f ◦ E)(x))T (E(x) − E(x))

for all E(x) ∈ Nǫ(E(x)) where Nǫ(E(x)) is ǫ-neighborhood of E(x), ǫ > 0.
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Theorem 1.25. (Sufficient optimality condition) Let M be a nonempty open
E-convex subset of Rn, f : M → R, g : M → Rm, and E : Rn → Rn are
differentiable functions. Let E be a homeomorphism and x be a fixed point of
E. Let f and g are semi-E-convex at x ∈ M

′

. If (x, y) ∈ M
′

× Rm satisfies
the following system

∇[(f ◦ E)(x) + 〈y, (g ◦ E)(x)〉] = 0,

〈y, (g ◦ E)(x)〉 = 0, y ≥ 0,

then x is local optimal solution of (P ).

Chapter 3

In this chapter generalized differentiable E-invex, E-quasiinvex, E-pseudoinvex,

semi-E-invex, semi-E-quasiinvex, semi-E-pseudoinvex functions are introduced.

The sufficient optimality condition and the duality results for the nonlinear

programming problem under generalized E-invexity are derived and the re-

sults are verified through examples. Some of the important results of this

chapter are given below.

Theorem 1.26. (Sufficient optimality condition) Let M be a nonempty E-
invex subset of Rn with respect to η : Rn × Rn → Rn, E : Rn → Rn. Let
E(M) be an open set in Rn. Suppose f : M → R, g : M → Rm and E

are differentiable functions on M . If f is E-pseudoinvex function and for
u ≥ 0, uT g is semi-E-quasiinvex function with respect to same η at x ∈ M

′

,

where M
′

= {x ∈ M | g(x) ≤ 0}, x is a fixed point of the map E, (x, u) ∈
M

′

× Rm, u ≥ 0 satisfy the following system

∇[(f ◦ E)(x) + 〈u, (g ◦ E)(x)〉] = 0,

〈u, (g ◦ E)(x)〉 = 0,

then x is a local optimal solution of (P ).

Theorem 1.27. Let M be a nonempty E-invex subset of Rn with respect to
η : Rn × Rn → Rn, E : Rn → Rn. Let E(M) be an open set in Rn. Suppose
f : M → R, g : M → Rm and E are differentiable functions on M . Let x be a
feasible solution of (P ) and (y, u) be feasible solution of (MD), where y ∈ M
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is a fixed point of the map E. If f is E-pseudoinvex function with respect to
η and uT g is semi-E-quasiinvex function with respect to same η at y then

f(E(x)) ≥ f(E(y)) for all x ∈ M ′.

Theorem 1.28. Let M be a nonempty E-invex subset of Rn with respect to
η : Rn × Rn → Rn, E : Rn → Rn. Let E(M) be an open set in Rn. Suppose
f : M → R, g : M → Rm and E are differentiable functions on M . If x is
an optimal solution of (P ), where x is a fixed point of the map E at which
KKT constraint qualification is satisfied then there exists u ∈ Rm, u ≥ 0 such
that (x, u) is a feasible solution for (MD). If f is E-pseudoinvex function with
respect to η on M and uTg is semi-E-quasiinvex function with respect to same
η at x ∈ M, then the optimal values of (P ) and (MD) are equal on E(M).

Chapter 4

This chapter is a continuation of Chapter 3. Here the notion of second or-

der generalized differentiable E-invex, E-quasiinvex, E-pseudoinvex, semi-E-

invex, semi-E-quasiinvex, semi-E-pseudoinvex functions are introduced. The

duality results for the nonlinear programming problem under second order

generalized E-invexity are derived. Some of the important results of this

chapter are given below.

Theorem 1.29. (Weak Duality) Let M be a nonempty E-invex subset of Rn

with respect to η : Rn × Rn → Rn, E : Rn → Rn. Let E(M) be an open
set in Rn. Suppose f : M → R, g : M → Rm and E are differentiable
functions on M . Let x be a feasible solution of (P ) and (y, u, p) be feasible
solution of (MD2), where y ∈ M is a fixed point of the map E. If f is second
order semi-E-pseudoinvex function with respect to η and uT g is second order
semi-E-quasiinvex function with respect to same η at y then

f(x) ≥ f(y) −
1

2
pT∇2f(y)p for all x ∈ M ′.

Theorem 1.30. (Strong Duality) Let M be a nonempty E-invex subset of Rn

with respect to η : Rn × Rn → Rn, E : Rn → Rn. Let E(M) be an open set
in Rn. Suppose f : M → R, g : M → Rm and E are differentiable functions
on M . If x is an optimal solution of (P ), where x is a fixed point of the
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map E at which KKT constraint qualification is satisfied, then there exists
u ∈ Rm, u ≥ 0 such that (x, u, p = 0) is feasible solution for (MD2). If f

is second order semi-E-pseudoinvex function with respect to η on M and uTg

is second order semi-E-quasiinvex function with respect to same η at x ∈ M

then the optimal values of (P ) and (MD2) are equal.

Duality results for Lagrange dual, Fenchel dual and Fenchel-Lagrange dual

were studied by Wanka and Bot [89] using convexity. In Chapters 5 and 6, we

have studied the duality results for Lagrange dual, Fenchel dual and Fenchel-

Lagrange dual using convexity and E-convexity assumptions.

Chapter 5

In this chapter strong duality results between a primal nonlinear program-

ming problem and its Lagrange dual, Fenchel dual and Fenchel-Lagrange dual

are proved using E-convex functions. Some of the important results of this

chapter are given below.

Theorem 1.31. Let M be a nonempty subset of Rn, M is an E-convex set
and E(M) = M . If f : M → R, g : M → Rm are E-convex functions and
f(E(x)) ≥ f(x), g(E(x)) ≥ f(x) ∀ x ∈ M, then sup(DE

L ) = sup(DE
FL).

Theorem 1.32. Let M be a nonempty E-convex subset of Rn, E : Rn → Rn

such that E(M) = M . If g is E-convex function on M , G = {x ∈ M : (g ◦
E)(x) ≤ 0} 6= ∅ and (CQ) is satisfied then sup(DE

F )= sup(DE
FL).

Theorem 1.33. (Strong duality) Let M be a nonempty E-convex subset of Rn,
f : Rn → R and g : Rn → Rm, are E-convex functions on M , E : Rn → Rn

such that G = {x ∈ M : (g ◦ E)(x) ≤ 0} 6= ∅, (CQ) is satisfied. If inf(PE) is
finite then strong duality holds that is

inf(PE) = sup(DE
L )

Theorem 1.34. (Strong duality) Let M be a nonempty E-convex subset of
Rn, E : Rn → Rn such that E(M) = M . If
(i)f and g are E-convex functions on M ,
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(ii) G = {x ∈ M : (g ◦ E)(x) ≤ 0} 6= ∅ and (CQ) is satisfied,
(iii) inf(PE) is finite,
(iv) (f ◦ E)(x) ≥ f(x), (g ◦ E)(x) ≥ g(x) ∀ x ∈ M

then
inf(PE) = sup(DE

L ) = sup(DE
F ) = sup(DE

FL).

Chapter 6

In this chapter second order Lagrange dual, Fenchel dual and Fenchel-Lagrange

dual for a nonlinear programming problem are constructed. Weak duality re-

sults are proved and duality relationship between these three second order

duals under appropriate assumptions are established. Some of the important

results of this chapter are given below.

Theorem 1.35. If f and gi, i = 1, . . . , m are convex functions then

sup(D2
L) = sup(D2

FL).

Theorem 1.36. If gi, i = 1, . . . , m are convex functions such that G =
{(x, r) : x, r ∈ Rn, G2(x, r) ≤ 0} 6= ∅ and (C̄Q) is satisfied then

sup(D2
F ) = sup(D2

FL).

Theorem 1.37. (Strong duality) If f : Rn → R, gi : Rn → R, i = 1, . . . , m
are convex functions such that G = {(x, r) : x, r ∈ Rn, G2(x, r) ≤ 0} 6= ∅,
(C̄Q) is satisfied and inf(P ) is finite then

inf(P 2) = sup(D2
L) = sup(D2

F ) = sup(D2
FL).

Theorem 1.38. If f and gi, i = 1, . . . , m are E−convex functions on Rn and
E : Rn → Rn is a linear function then sup(DE2

L ) = sup(DE2
FL). In addition to

this if {(x, r) : x, r ∈ Rn, G2
E(x, r) ≤ 0} 6= ∅ and there exists at least one

(x′, r′) ∈ Rn × Rn such that G2
E(x′, r′) < 0, then sup(DE2

F ) = sup(DE2
FL) =

sup(DE2
L ) = inf(P 2

E).

Bector and Chandra [8] have studied duality results for fuzzy linear pro-

gramming problem. In Chapters 7 and 8, we have studied duality results for
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fuzzy nonlinear programming problem.

Chapter 7

This chapter deals with duality results of nonlinear programming problem in

fuzzy scenario. Here the concept of fuzzy feasible region is introduced. Also

crisp equivalent of Lagrange dual for fuzzy primal nonlinear programming

problem is formulated. The weak and strong duality relationship between

them are studied and verified through an example. The following results are

proved in this chapter.

Theorem 1.39. For every feasible solution of (FNP ) there exists λ ∈ [0, 1]
such that (x, λ) is a feasible solution of (CFNP ).

Theorem 1.40. Let x be a feasible solution of (FNP ) and (u,y) be a feasible
solution of (FND) then there exists λ, η ∈ [0, 1] such that

(λ − 1)p0 + (η − 1)q0 + W0 − Z0 ≤ L(u, y)− f(x).

In particular weak duality holds if x ∈ FR(p
′

0, 0), for any p
′

0 ∈ [0, p0] and
strong duality holds if x ∈ FR(p

′

0, p
′

) \ FR(p
′

0, 0), for any p
′

∈ [0, p] .

Chapter 8

This chapter is a continuation of Chapter 7. In this chapter crisp equivalent

of Wolfe’s first order dual and Wolfe’s second order dual for fuzzy primal

nonlinear programming problem are formulated. The weak and strong duality

relationship between them are studied and verified through an example. The

following results are proved in this chapter.

Theorem 1.41. Let (x
0
, λ0) be a feasible solution of (CFNP ) and (x∗, u∗, η∗)

is a feasible solution of (CFWD). If f and g are differentiable convex func-
tions at x∗ then

(λ0 − 1)p
0
+ (λ0 − 1)u∗T p + (η∗ − 1)q

0
≤ Z0 − W0.
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Theorem 1.42. Let (x
0
, λ0) be a feasible solution of (CFNP ) and (x∗, u∗, s∗, η∗)

be a feasible solution of (CFWD2). If f and g are twice differentiable convex
functions at x∗ then

(λ0 − 1)p
0
+ (λ0 − 1)u∗T p + (η∗ − 1)q

0
≤ Z0 − W0 for s∗ = (x

0
− x∗) .

Theorem 1.43. Suppose

1. E : Rn → Rn is a differentiable function, E(Rn) is an open set of Rn

and x∗ is a fixed point of E,

2. f and g are differentiable semi-E-invex functions at x∗ with respect to
η, where η : Rn × Rn → Rn,

3. (x
0
, λ0) and (x∗, u∗, η∗) are feasible solutions of (CFNP ) and (CFWD)

respectively,

then (λ0 − 1)p
0
+ (λ0 − 1)u∗T p + (η∗ − 1)q

0
≤ Z0 − W0.

Theorem 1.44. Suppose

1. E : Rn → Rn is a twice differentiable function, E(Rn) is an open set of
Rn and x∗ is a fixed point of E,

2. f and g are twice differentiable semi-E-invex functions at x∗ with respect
to η, where η : Rn × Rn → Rn,

3. (x
0
, λ0) and (x∗, u∗, s∗, η∗) are feasible solutions of (CFNP ) and (CFWD2)

respectively, then

(λ0 − 1)p0 + (λ0 − 1)u∗T p + (η∗ − 1)q0 ≤ Z0 − W0.

Chapter 9

This is the concluding chapter which includes some important remarks and

future plan of our research work.

⋆ ⋆ ⋆⋆
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