CONTENTS

			Page No.
	Title page		i
	Declaration	by the scholar	ii
Certificate by the supervisor			iii
	Certificate of	of approval	iv
	Acknowledg	gements	v
	Contents		vi
	List of figur	es	viii
	List of table	S	xii
	List of symb	pols	xiv
	List of abbro	eviations	xvi
	Abstract		xvii
	Chapter 1	Introduction	1
	Chapter 2	Review of Literature	7
	2.1	Aloe vera plant	7
	2.2	Biological activity of AVG	8
	2.3	Design and development of AVG filleting machine	9
	2.4	Artificial neural network and genetic algorithms modelling	12
	2.5	Dehydration of AVG	14
	2.6	Diffusion and diffusion coefficient	18
	2.7	Drying models	19
	2.8	Response surface modelling and optimization technique	22
	2.9	Moisture sorption behaviour	23
	2.10	Packaging and storage of powders	26
	2.12	Quality parameters of Aloe vera constituents	30
	Chapter 3	Theoretical Considerations	33
	3.1	Leaf parameters	33
	3.2	Leaf trimming process	36
	3.3	Filleting indices	37
	3.4	Optimization of machine and leaf parameters by ANN and GA modelling	37
	3.5	Desiccant dehumidified air drying of AVG	44
	3.6	Drying parameters	51
	3.7	Mathematical modelling of drying kinetics	53
	Chapter 4	Materials and Methods	57
	4.1	Raw material	57
	4.2	Leaf trimming process for AVG filleting	57
	4.3	Testing of AVG filleting machine	58
	4.4	Optimization of machine and leaf parameter by ANN and GA modelling	60
	4.5	Desiccant dehumidified air drying of Aloe vera gel	60
	4.6	Experimental set-up for drying	61
	4.7	Measuring instruments and techniques	62
	4.8	Experimental design and data analysis	64

4.9	Optimization of process parameters	67
4.10	Quantification of hydroxyanthracene derivative (aloin) in	67
	desiccant dehumidified air dried AVG powder	
4.11	Colour measurement (CIELAB)	68
4.12	Rehydration kinetics and mathematical modelling of mass	69
	transfer during rehydration of AVG	
4.13	Determination of sorption isotherm for desiccant dehumidified	71
	air dried AVG powder	
4.14	Storage characteristics of desiccant dehumidified air dried AVG	74
	powder and prediction of safe storage conditions	
	I I I I I I I I I I I I I I I I I I I	
Chapter 5	Design and Development of Aloe vera Gel Filleting Machine	79
5.1	Background and prevailing state of the art	79
5.2	Objectives of the investigation	80
5.3	The various components of the machine	80
5.4	Method for filleting	95
5.5	Salient features of the design	95
5.6	Novelty of the design	98
5.7	Inventiveness	98
5.8	Advantages of the machine	98
59	Cost of the machine and cost of operation	99
5.10	HPLC analysis for determination of aloin content in AVG fillets	99
0.10	obtained through gel filleting machine	
Chapter 6	Results and Discussion	101
Chapter 6	Results and Discussion Optimization of machine and leaf parameters for AVG filleting	-101 101
Chapter 6 6.1 6.2	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG	101 101 114
Chapter 6 6.1 6.2 6.3	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass	101 101 114 135
Chapter 6 6.1 6.2 6.3	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder	101 101 114 135
Chapter 6 6.1 6.2 6.3 6.4	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried	101 101 114 135 145
Chapter 6 6.1 6.2 6.3 6.4	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder	101 101 114 135 145
Chapter 6 6.1 6.2 6.3 6.4 6.5	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe	101 101 114 135 145
Chapter 6 6.1 6.2 6.3 6.4 6.5	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions	101 101 114 135 145 154
Chapter 6 6.1 6.2 6.3 6.4 6.5	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions	101 101 114 135 145 154
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions	101 101 114 135 145 154
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References	101 101 114 135 145 154 163 171
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References Appendix A	101 101 114 135 145 154 163 171 187
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	 Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References Appendix A Appendix B 	101 101 114 135 145 154 163 171 187 189
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions References Appendix A Appendix B Appendix C	101 101 114 135 145 154 163 171 187 189 195
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions References Appendix A Appendix B Appendix C Appendix D	101 101 114 135 145 154 163 171 187 189 195 197
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions References Appendix A Appendix B Appendix C Appendix D Appendix E	101 101 114 135 145 154 163 171 187 189 195 197 198
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References Appendix A Appendix B Appendix C Appendix D Appendix E About the author	101 101 114 135 145 154 163 171 187 189 195 197 198 199
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References Appendix A Appendix B Appendix D Appendix E About the author	101 101 114 135 145 154 163 171 187 189 195 197 198 199
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References Appendix A Appendix B Appendix D Appendix E About the author	101 101 114 135 145 154 163 171 187 189 195 197 198 199
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References Appendix A Appendix B Appendix D Appendix E About the author	101 101 114 135 145 154 163 171 187 189 195 197 198 199
Chapter 6 6.1 6.2 6.3 6.4 6.5 Chapter 7	Results and Discussion Optimization of machine and leaf parameters for AVG filleting Desiccant dehumidified air drying characteristics of AVG Rehydration kinetics and mathematical modelling of mass transfer during rehydration of dehydrated AVG powder Moisture sorption behaviour of desiccant dehumidified air dried AVG powder Storage characteristics of AVG powder and prediction of safe storage conditions Summary and Conclusions References Appendix A Appendix B Appendix D Appendix E About the author	101 101 114 135 145 154 163 171 187 189 195 197 198 199

LIST OF FIGURES

Fig. No.	Title	Page No.
1.1	Schematic representation of the Aloe vera plant and a cross section through an Aloe vera leaf	2
2.1	Apparatus for washing an Aloe vera leaf	9
2.2	Aloe vera plant gel separator	9
2.3	Aloe vera leaf processor	10
2.4	Apparatus for extracting AVG	10
2.5	Apparatus for extraction of AVG	11
2.6	AVG extracting apparatus	11
2.7	AVG extractor	12
3.1	Approximate geometry of Aloe vera leaf	34
3.2	A typical Aloe vera leaf showing the abaxial and adaxial surface	35
3.3	Leaf trimming procedure resulting in removal of sides, removal of base and removal of the tip of the leaf	36
3.4	Transverse section of an Aloe leaf with distinct separation into two layers the green leaf rind and colourless gel parenchyma	36
3.5	Basic structure of the designed feed forward back propagation	39
3.6	Procedure for optimization using coupled neural network and	44
4.1	genetic algorithms Alog yers plantations at the Department of Agricultural and	58
4.1	Food Engineering, IIT Kharagpur, India	38
4.2	Trimmed Aloe vera leaves for gel filleting	58
4.3	Process flow diagram for production of Aloe vera gel powder	61
4.4	Schematic diagram of desiccant dehumidified air drying set-up	63
4.5	Desiccant dehumidified air drying set-up	64
4.6	High performance liquid chromatography instrument	68
4.7	Konica Minolta colourimeter	68
5.1	Upper rind filleting blade	82
5.2	Lower rind filleting blade	82
5.3	Combined upper and lower rind filleting blades	82
5.4	Upper roller	83
5.5	Lower roller	83
5.6	Drive pulley	84
5.7	Pinion in power transmission system	84
5.8	Power transmission system showing the pinion, pressure adjusting spring and blade movement as per the thickness of the	86
5.9	Power transmission system with rollers, pinions, pulley and V-	87
5 10	Dell Loof holding and fooding abannol	07
5.10	Lear noturing and recuring channel Upper rind collection trough	0/ 00
5.11	Gel fillet collection trough	00 90
J.12 5 12	Lower rind collection trough	07 00
5.15 5.14	Lower find collection flough Isometric view of AVC filleting machine	90 00
5.14 5.15	Front view of AVG filloting machine	90 01
5.15 5.16	Ton view of AVG filleting machine	91 01
		71

5.17	Pictorial view of AVG filleting machine	92
5.18	Pictorial view of AVG filleting machine	92
5.19	AVG filleting machine	93
5.20	Trimmed Aloe vera leaves before filleting	96
5.21	AVG fillets and rinds obtained through AVG filleting machine	96
5.22	AVG fillets obtained through AVG filleting machine	96
5.23	Chromatograms for determination of aloin; Blade angel: 4°;	100
	Speed: 50 rpm	
5.24	Chromatograms for determination of aloin; Blade angel: 4°; Speed: 80 rpm	100
5.25	Chromatograms for determination of aloin; Blade angel: 4°; Speed: 100 rpm	100
5.26	Chromatograms for determination of aloin; Blade angel: 6°; Speed: 50 rpm	100
5.27	Chromatograms for determination of aloin; Blade angel: 6°; Speed: 80 rpm	100
5.28	Chromatograms for determination of aloin; Blade angel: 6°; Speed: 100 rpm	100
5.29	Chromatograms for determination of aloin; Blade angel: 2°; Speed: 50 rpm	100
5.30	Chromatograms for determination of aloin; Blade angel: 2°; Speed: 80 rpm	100
5.31	Chromatograms for determination of aloin; Blade angel: 2°;	100
	Speed: 100 rpm	
6.1	Comparison of experimental and NN predicted FE	102
6.2	Comparison of experimental and NN predicted PGF	103
6.3	Comparison of experimental and NN predicted PFJ	104
6.4	Variation of filleting indices with roller speed at constant blade angle	106
6.5	Variation of filleting indices with blade angle at constant roller speed	108
6.6	AVG fillets obtained at 2° blade angle	110
6.7	AVG fillets obtained at 4° blade angle	111
6.8	AVG fillets obtained at 6° blade angle	112
6.9	Variation of moisture content of AVG with temperature, relative humidity and air velocity	115
6.10	Dehydrated AVG powder obtained through desiccant dehumidified air drying	116
6.11	HPLC chromatogram of AVG powder	122
6.12	Response surface and contour plots for drying time as a function	123
	of temperature and relative humidity at constant air velocity of 1.25 m.s^{-1}	
6.13	Response surface and contour plots for drying time as a function of temperature and air velocity at constant relative humidity of 22.50%	123
6.14	Response surface and contour plots for drying time as a function of relative humidity and air velocity at constant air temperature of 55 $^{\circ}C$	123

- 6.15 Response surface and contour plots for specific energy 124 consumption as a function of temperature and relative humidity at constant air velocity of 1.25 m.s⁻¹
- 6.16 Response surface and contour plots for specific energy 124 consumption as a function of temperature and air velocity at constant relative humidity of 22.50%
- 6.17 Response surface and contour plots for specific energy 124 consumption as a function of relative humidity and air velocity at constant air temperature of 55 $^{\circ}$ C
- 6.18 Response surface and contour plots for aloin content as a 125 function of temperature and relative humidity at constant air velocity of 1.25 m.s⁻¹
- 6.19 Response surface and contour plots for aloin content as a 125 function of temperature and air velocity at constant relative humidity of 22.50%
- 6.20 Response surface and contour plots for aloin content as a 125 function of relative humidity and air velocity at constant air temperature of 55 °C
- 6.21 Response surface and contour plots for colour value (L^*) as a 126 function of temperature and relative humidity at constant air velocity of 1.25 m.s⁻¹
- 6.22 Response surface and contour plots for colour value (L^*) as a 126 function of temperature and air velocity at constant relative humidity of 22.50%
- 6.23 Response surface and contour plots for colour value (L^*) as a 126 function of relative humidity and air velocity at constant air temperature of 55 °C
- 6.24 Response surface and contour plots for colour value (a^*) as a 127 function of temperature and relative humidity at constant air velocity of 1.25 m.s⁻¹
- 6.25 Response surface and contour plots for colour value (a^*) as a 127 function of temperature and air velocity at constant relative humidity of 22.50%
- 6.26 Response surface and contour plots for colour value (a^*) as a 127 function of relative humidity and air velocity at constant air temperature of 55 °C
- 6.27 Response surface and contour plots for colour value (b^*) as a 128 function of temperature and relative humidity at constant air velocity of 1.25 m.s⁻¹
- 6.28 Response surface and contour plots for colour value (b^*) as a 128 function of temperature and air velocity at constant relative humidity of 22.50%
- 6.29 Response surface and contour plots for colour value (b^*) as a 128 function of relative humidity and air velocity at constant air temperature of 55 °C
- 6.30 Graphical overlay plot for optimum conditions of drying of 129 AVG
- 6.31 Arrhenius-type relationship between effective moisture 133 diffusivity and temperature
- 6.32 HPLC chromatogram for FD powder 135

6.33	Rehydration rate curves of dehydrated AVG at different temperatures	136
6.34	Rehydration ratio (RR) and water holding capacity (WHC) for AVG powder rehydrated at different temperatures	140
6.35	Plots of residual X_w versus predicted X_w by Peleg model	141
6.36	Plots of residual X _w versus predicted X _w by Antonio <i>et al.</i> model	142
6.37	Plots of residual X _w versus predicted X _w by Weibull model	143
6.38	Experimental and calculated moisture data for (a) Peleg (b) Weibull and (c) Antonio <i>et al.</i> Models	144
6.39	Experimental and GAB model predicted isotherms for	146
	dehumidified air dried AVG powder at 25, 32 and 39 °C	
6.40	Plots of residual EMC versus predicted EMC for AVG powder by GAB model	149
6.41	Plots of residual EMC versus predicted EMC for AVG powder	150
	by Oswin model	
6.42	Plots of residual EMC versus predicted EMC for AVG powder	151
	by Peleg model	
6.43	Plots of residual EMC versus predicted EMC for AVG powder by Smith model	152
6.44	Variation of net isosteric heat of sorption of dehumidified air	153
	dried Aloe powder with moisture content	
6.45	Weight gain by silica gel packed in AF, BOPP and PP	155
	packaging materials with respect to time	
6.46	Variation in moisture content of aloe powder packed in AF, BOPP and PP packaging material during storage at 38 ± 1 °C and 00 ± 10 (BU with time	156
C 17	$90\pm1\%$ KH with time	1.00
6.47	Colour change in aloe powder packed in AF, BOPP and PP packaging materials and stored at 38 ± 1 °C and $90\pm1\%$ RH with time	160
6.18		160
0.40	Relationship between $\ln(1 - \frac{\Delta E_s}{\Delta E^*})$ and storage time for AVG	100
	powder in AF, BOPP and PP packaging materials	

LIST OF TABLES

Table No.	Title	Page No.
2.1	Major components of Aloe vera	7
2.2	Mathematical models used to test the drying kinetics	19
3.1	Data on fresh Aloe vera leaf parameters	35
3.2	Data on trimmed Aloe vera leaf parameters	37
3.3	Mathematical model applied to desiccant dehumidified air drying data	54
4.1	Full factorial experimental design for testing and optimization of AVG filleting machine	59
4.2	CCRD type experimental design for desiccant dehumidified air drying of AVG	66
4.3	Saturated salt solutions at different temperatures and relative humidities	71
4.4	Isotherm models used for experimental data fitting	72
5.1	HPLC analysis for determination of aloin content in Aloe vera gel fillet (filleted through AVG filleting machine)	99
6.1	(ΔO_o) values for independent parameters for the three responses studied	104
6.2	Comparison between responses predicted individually and at optimum process variables	113
6.3	Experimental values of response variables for CCRD	115
6.4	ANOVA table showing the effects of the variables on the drying time and the coefficients of predictive models for	118
6.5	ANOVA table showing the effects of the variables on the specific energy consumption and the coefficients of predictive models for desiccant debumidified air drying	118
6.6	ANOVA table showing the effects of the variables on the aloin content coefficients of predictive models for desiccant dehumidified air drying	119
6.7	ANOVA table showing the effects of the variables on the colour value L^* and the coefficients of predictive models for desiccant dehumidified air drying	119
6.8	ANOVA table showing the effects of the variables on the colour value a^* and the coefficients of predictive models for desiccant dehumidified air drying	120
6.9	ANOVA table showing the effects of the variables on the colour value b^* and the coefficients of predictive models for desiccant dehumidified air drying	120
6.10	Constraints set for numerical solution of optimum drying conditions	130
6.11	Results of optimization by desirability function	130
6.12	Predicted and experimental values for dehydrated AVG using optimum process parameters	131
6.13	Values of model constants, R^2 , SSE, RMSE and χ^2 values of desiccant dehumidified air- dried AVG powder	131

6.14	Mean values of the parameters A and B of different models used at different temperatures	137
6.15	Parameters for Arrhenius relationship	138
6.16	Mean values of the statistical analysis applied to equations to model rehydration kinetics	140
6.17	Moisture sorption data for desiccant dehumidified air dried AVG powder	146
6.18	Constants of the isotherm models for desiccant dehumidified air dried AVG powder	147
6.19	Statistical results obtained with different models for desiccant dehumidified air dried AVG powder	148
6.20	ANOVA for moisture content of desiccant dehumidified air dried AVG powder	156
6.21	Moisture content and water activity variation of desiccant dehumidified air dried AVG powder during accelerated storage	157
6.22	Changes in Hunter Lab colour values of AVG powder during storage in AF, BOPP and PP packing materials	158
6.23	ANOVA for Hunter Lab values of desiccant dehumidified air dried AVG powder	158
6.24	ANOVA for colour change (ΔE) value of desiccant	159
	denumamed air dried AVG powder	

LIST OF SYMBOLS

ad: accuracy with which the variables were measuredaw: water activity, dimensionlessCg, Kg: GAB models constants	
a_w : water activity, dimensionless C_g, K_g : GAB models constants	
C _g , K _g : GAB models constants	
0 0	
cm : centimeters	
cP : centipoises	
c_r : cross over rate	
D : moisture diffusivity, $m^2.s^{-1}$	
D_{eff} : effective diffusivity coefficient, $m^2.s^{-1}$	
d.b. : dry basis	
d.f. : degree of freedom	
d.m. : dry matter	
E% : relative deviation percent	
E_a : activation energy, kJ.mol ⁻¹	
E_0 : error matrix	
et al. : et alibi, and others	
etc. : et cetera	
exp : exponential	
F : fitness function	
F _o : Fourier number	
F _{cal} : calculated F value	
g : gram	
hp : horse power	
I : matrix of input layer neurons	
i.e. : id est, that is	
k : drying rate constant, s^{-1} or h^{-1}	
k : water vapour permeability of packaging material, kg.m ⁻² day ⁻¹ Pa ⁻¹	
kg : kilogram	
L : half-thickness of slab, m	
L^* , a^* and b^* : Hunter colour lab parameters	
M _o : monolayer moisture content, g water per g dry matter	
M_0 : moisture content at time t=0, g water per g dry matter	
M _e : equilibrium moisture content, g water per g dry matter	
M_{ci} : calculated equilibrium moisture content, kg water.kg dry solid ⁻¹	
M _{ei} : experimental equilibrium moisture content, kg water.kg dry solid ⁻¹	
M : moisture content at time t, g water per g dry matter	
m : string length	
min : minute	
N : number of data points	
N : number of data points n _i : number of input layer neurons	
N : number of data points ni : number of input layer neurons nh : number of hidden layer neurons	
N: number of data points n_i : number of input layer neurons n_h : number of hidden layer neurons n_o : number of output layer neurons	
N: number of data points n_i : number of input layer neurons n_h : number of hidden layer neurons n_o : number of output layer neurons O_h : output matrix of hidden layer neurons	
N: number of data points n_i : number of input layer neurons n_h : number of hidden layer neurons n_o : number of output layer neurons O_h : output matrix of hidden layer neurons O_o : output matrix of output layer neurons	
N: number of data points n_i : number of input layer neurons n_h : number of hidden layer neurons n_o : number of output layer neurons O_h : output matrix of hidden layer neurons O_o : output matrix of output layer neurons P : thickness of Aloe vera leaf, mm	
N: number of data points n_i : number of input layer neurons n_h : number of hidden layer neurons n_o : number of output layer neurons O_h : output matrix of hidden layer neurons O_o : output matrix of output layer neurons P : thickness of Aloe vera leaf, mm P^* : saturation vapour pressure of water, Pa	
N: number of data points n_i : number of input layer neurons n_h : number of hidden layer neurons n_o : number of output layer neurons O_h : output matrix of hidden layer neurons O_o : output matrix of output layer neurons O_o : output matrix of output layer neurons P : thickness of Aloe vera leaf, mm P^* : saturation vapour pressure of water, Pa p_m : mutation rate	

q	: weight matrix between hidden and output layer neurons
R	: universal gas constant, 8.314 kJ.mol ⁻¹
\mathbf{R}^2	: coefficient of determination
R _h	: relative humidity of storage environment, %
S	: seconds
Т	: absolute temperature, K
Thnew	: threshold value matrix for hidden layer neurons
Tonew	: threshold value matrix for output layer neurons
t	: drying time, min, or h
u	: weight of synoptic joints between input and hidden layer neurons
V	: volume of Aloe vera leaf, mm ³
viz.	: videlicet, namely
v _b	: binary value of one population string
VS	: versus
W	: width of Aloe vera leaf, mm
W	: weight of silica gel, kg
w.b.	: wet basis
W_s	: weight of dry solids, g
X _c	: critical moisture content, % (d.b.)
X_i	: initial moisture content, % (d.b.)
X_1	: real value of desiccant dehumidified air drying temperature
X_2	: real value of desiccant dehumidified air drying relative humidity
X_3	: real value of desiccant dehumidified air drying air velocity
X1	: coded value of desiccant dehumidified air drying temperature
X2	: coded value of desiccant dehumidified air drying relative humidity
X3	: coded value of desiccant dehumidified air drying air velocity
X_{max}	: maximum value of X
X _{min}	: minimum value of X
Xm	: arithmetic mean of X _{max} or X _{min}
X _{wt}	: moisture content at time 't', % (d.b.)
X _{we}	: equilibrium moisture content, % (d.b.)
X_{wo}	: initial moisture content, % (d.b.)
Ye	: experimental value of response
\mathbf{Y}_{\min}	: minimum values of responses
Y _{max}	: maximum values of responses
YM	: arithmetic mean of Y _{max} and Y _{min}
Y _p	: predicted value of response
у	: matrix of experimental responses
Z	: length of Aloe vera leaf, mm
Z	: number of constants
°C	: degree Celsius
%	: per cent
0	: degree
ΔE_s	: overall colour difference
ΔO_o	: difference between the two predicted output values
ψ_0	: Arrhenius factor
heta	: shelf-life, days
$\theta_{_{W}}$: time for weight measurement of silica gel, days
χ^{2}	: chi-square

LIST OF ABBREVIATIONS

AC	: Aloin Content
AF	: Aluminum Foil
ANN	: Artificial Neural Network
ANN-GA	: Artificial Neural Network and Genetic Algorithm
Anon	: Anonymous
ANOVA	: Analysis of Variance
AOAC	: Association of Official Analytical Chemists
AVG	: Aloe Vera Gel
AVP	: Aloe Vera Powder
BOPP	: Biaxially Oriented Poly Propylene
CCRD	: Central Composite Rotatable Design
CI	: Confidence Interval
CV	: Coefficient of Variation
DR	: Drying Rate
DT	: Drying Time
EEC	: European Economic Community
EMC	: Equilibrium Moisture Content
ERH	: Equilibrium Relative Humidity
FE	: Filleting Efficiency
GA	: Genetic Algorithm
GAB	: Guggenheim-Anderson-de Boer
HPLC	: High Pressure Liquid Chromatography
MLFF	: Multi Layer Feed Forward
MR	: Moisture Ratio
NN	: Neural Network
NNGA	: Neural Network and Genetic Algorithm
PFJ	: Percentage Fillet Juice Yield
PGF	: Percentage Gel Fillet Yield
PP	: Polypropylene
RH	: Relative Humidity
RMSE	: Root Mean Square Error
RR	: Rehydration Ratio
RSM	: Response Surface Methodology
SEC	: Specific Energy Consumption
SSE	: Sum Square Error
WHC	: Water Holding Capacity