Contents

Introduction	1
1.1 Information Hiding Paradigm	1
1.1.1 Steganography	1
1.1.2 Digital Watermarking and Steganography	2
1.1.3 Steganalysis	3
1.1.4 Steganographic Framework	4
1.2 Literature Survey	6
1.2.1 Survey of Steganographic Algorithms	6
1.2.2 Survey of Steganalytic Attacks	12
1.3 Motivation and Objectives	18
1.4 Contribution of this Thesis	20
1.4.1 Reducing Embedding Noise in	
Multiple Bit Plane Steganography	20
1.4.2 Steganography Based on Statistical Restoration	21
1.4.3 Adaptive Pixel Swapping	22
1.4.4 Steganography Based on Domain Separation	23
1.5 Thesis Organization	24
1.6 Summary	25
2 Research Background 27	
2.1 Mathematical Preliminaries	27
2.1.1 Hypothesis Testing	27

2.1.2 Wilcoxon Rank-Sum Test	28
2.1.3 Norm	29
2.2 Evaluation Metrics	30
2.2.1 Peak Signal to Noise Ratio (PSNR)	30
2.2.2 Receiver Operating Characteristics (ROC) Curve	31
2.2.3 Scatter Plot	32
2.3 Repeat Accumulate Coding for Error Control	32
2.4 Experimental Dataset	35
2.4.1 Standard Image Dataset (SID)	35
2.4.2 JPEG Compressed Image Dataset (JCID)	35
2.4.3 Uncompressed Image Dataset (UID)	35
2.4.4 Never Compressed Image DataSet (NCID)	35
2.5 A Comparative Study of the Related Work	36
2.5.1 Performance of LSB Embedding and 3LSB	
against WAM	36
2.5.2 Performance of LSB Embedding and 3LSB	
against the Blind Attack Proposed by Xuan et al. [43]	36
2.5.3 Performance of YASS and QIM against	
JPEG domain Blind Attacks	38
2.5.4 Performance of LSBM and ILSBM against	
Targeted Attacks	40
2.5.5 Summary of Observations .	40
2.5.6 Proposed Approaches	43

2.6 Summary	43
3 Multiple Bit Plane Steganography	47
3.1 Algorithm based on Single Digit Sum Encoding	48
3.1.1 Single Digit Sum Encoding	48
3.1.2 Proposed Encoding Scheme	50
3.1.3 Embedding and Extraction Algorithm	53
3.1.4 Noise Comparison with 1LSB and 3LSB	
Steganography Algorithm	55
3.1.5 Experimental Results	56
3.2 Multiple Bit Plane Steganography by Changing Bases	59
3.2.1 Proposed Approach	60
3.2.2 Embedding and Extraction Schemes	61
3.2.3 Steganalytic Security	65
3.3 Comparison between the SDS Based Method and the	
Base Change Method (SABC)	68
3.4 Summary	68
4 Steganography Based on Statistical Restoration	71
4.1 Spatial Domain Statistical Restoration	71
4.1.1 Problem Formulation	72
4.1.2 Proposed Restoration Scheme	74
4.1.3 Restoration with Minimum Distortion	75
4.1.4 Experimental Results	77
4.2 Steganographic Algorithm based on Pixel Swapping	86

4.2.1 The Proposed Scheme	86
4.2.2 Experimental Results	88
4.2.3 Comparison with Existing Method	90
4.3 Comparison between SRASD and PSSA Scheme	97
4.4 Summary	99
5 Adaptive Pixel Swapping 101	
5.1 Pixel Swapping based on Local Statistics	101
5.1.1 Block based Pixel Swapping	102
5.1.2 Noise Analysis	103
5.1.3 The Proposed Scheme	107
5.1.4 Experimental Results	109
5.2 Steganographic Algorithm using Pixel Rearrangement	115
5.2.1 Message Representation using Pixel Ordering	116
5.2.2 The PRSA Algorithm	116
5.2.3 Noise Analysis	118
5.2.4 Experimental Results	121
5.3 Comparison Between APSSA Scheme and	
PRSA (3; 2) Scheme	121
5.4 Summary	123
6 Steganography Based on Domain Separation	125
6.1 Steganography Based on Spatial Desynchronization	125
6.1.1 Statistical Test for Calibration Attack	126
6.1.2 Counter Measures to Calibration Based	

Blind Attacks	129
6.1.3 The Proposed Algorithm	132
6.1.4 Performance Evaluation	138
6.2 Steganography based on Randomized Cropping	143
6.2.1 Randomized Cropping	143
6.2.2 Proposed Scheme	144
6.2.3 Experimental Results	146
6.3 Summary	150
7 Conclusion	157
7.1 Reducing Embedding Noise in Multiple	
Bit Plane Steganography	157
7.2 Steganography Based on Statistical Restoration	158
7.3 Adaptive Pixel Swapping	159
7.4 Steganography Based on Domain Separation	160
7.5 Future Scope	160
Bibliography	162