SYNOPSIS

A fundamental limitation of 1linear time-invariant (LTI) feedback
controllers is that they can not alter the plant zeros [18]. As a
consequence, they can not provide satisfactory control (e.g. gain margin
compensation [30], strong and simultaneous stabilization [10],
disturbance rejection [25]) in some situations, particularly when the
plant has non-minimum-phase (NMP) =zeros. This shortcoming of LTI
controllers has led researchers to investigate if periodic controllers
would improve matters, and this has become a topic of considerable
interest in current literature [1], (3], (41, (7], [81, (12], [19]1-(21],

(271, (2s8].

The periodic compensation' problem may be divided under two heads:
(a) continuous time, (b) discrete time. Analysis of periodic coefficient
differential equations being a difficult task, the continuous-time
problem has received only limited attention in literature. In fact, the
work of Lee, Meerkov and Runolfsson {21] appears to be the only one that
deals with this problem in some depth, using the averaging principle as
the method of analysis which, though, 1is wvalid only at very high
frequencies. (A better analytical tool to deal with such systems has
recently been developed in [8]).The important contributions of [21] are
that (a) it considers the controller in a minimally realizable form, and
(b) it introduces the concept of zero-placement. Discrete-time periodic
systems, on the other hand, have received considerably more attention in

literature [4]), [7], (121, (191, [20], [27]1, [28], the reason for this
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perhaps being the seminal work of Khargonekar, Poolla and Tannenbaum
[20], in which a convenient framework for the analysis of such systems

has been developed.

A study of the works pertaining to discrete-time periodic
controllers shows that the following definite conclusions regarding
their capabilities have been reached:

a) They can alter the system zeros [7], [12].

b) They can provide infinite gain margin (GM) compensation to

unstable bicausal plants having NMP zeros [71, [12], [20].
c) They, however, can not better LTI controllers in regard of

uniform disturbance rejection (31, [203, (271].

The same study, however, reveals certain incompletenesses in the

understanding of such controllers as well, especially in the aspects of

their
i) realizations,

ii) effectiveness in providing GM compensation to strictly proper

plants,
iii) simultaneous stabilization capability, and

iv) capability to reject disturbances at even/(odd) instants of

time.

We elaborate on these points further, restricting attention to SISO

systems :
i) It follows from [20] that a causal, linear, SISO, M-periodic

input-output map can be isomorphically represented as an MxM LTI



transfer matrix T(z) with T(w) lower triangular. This result 1is very
convenient, for it allows one to treat a SISO periodic problem as a
MIMO-LTI one. In fact, most of the works in literature assume the
periodic controller in a MIMO-LTI form and then proceed to obtain the
elements of the same so as to achieve the design goal. Now, although
such a T(z) may obviously be realized element by element using a set of
asynchronous samplers that link each one of the elementary transfer
functions to the input-output lines at the correct time instants, no
clear understanding exists in 1literature regarding their minimal
realizations. In other words, a general yet minimal representation of
causal periodic controllers is yet to be obtained in 1literature. This
problem is worth serious effort, for the design of periodic "systems
based on such a controller configuration would not only involve a
minimum number of unknowns but would also -ensure causality
automatically. (Note that the MIMO-LTI design approach doés not
guarantee causality synthetically. In fact constrained optimization
techniques are employed to ensure the same [4]). In this context the
controller structure of Das and Rajagopalan [7] may be ‘noted. Although
its capability for zero-placement and GM compensation has been
demonstrated, its input-output representation in a transfer function
form has not been obtained in [7]. Hence its full potential remains to

be tapped.

ii) While the maximum GM obtainable for an wunstable plant having
NMP zeros using LTI controllers is a finite number whose value can be

calculated following well known procedures [17], {30], it has been shown
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in literature {7} that 2-periodic controllers can provide infinite GM
compensation to such plants if they are bicausal in nature. So far as
strictly proper plants are concerned, however, although it has been
observed [7], [20], through numerical examples that periodic controllers
might provide ketter GM compensation than LTI ones, the problem of their
optimum GM compensation using periodic controllers still remains
unsolved. Moreover, in literature two approaches have been used to
provide GM compensation using periodic controllers. These are : (a) the
zero-placement approach (7], and (b) the factorization approach [20].
(Tt may be noted that both these approaches consist of shaping the
closed-loop characteristic equation in certain forms, and although the
latter is more general, the former 1is important since it maintains
system linearity.). So, for a complete understanding of the problem it
becomes necessary that the optimum GM obtainable for strictly proper
plants using periodic controllers through either of these approaches be

investigated.

ii1) While it is not always possible to stabilize two arbitrary
plants simultaneously using a single LTI controller [10], [14], [15],
[34], it has been claimed in [20] that it is possible to do so using
2~periodic controllers. No explanation, either analytical or numerical,
has, however, been presented in [20] to substantiate this clainm.
Consequently, this remains a open topic for Iinvestigation. In this
context, it would also be interesting to investigate if, in general, an
M-periodic controller would be able to provide simultaneous
stabilization to an M-tuple of plants. (It may be noted that [20] does

describe a procedure for obtalning periodic controllers for simultaneous
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stabilization of K-tuple of plants. This result, however, is of
theoretical interest only, for the procedure requires the evaluation of
deadbeat controllers for each one of the K-tuple of plants and,

moreover, results in a controller that has a very high period).

iv) It has been established in 1literature [3], [27] that,
regardless of the norm used, periodic controllers can not do better than
LTI ones in the respect of disturbance rejection -in LTI plants. Now,
since LTI controllers can not provide uniform (unweighted) disturbance
rejection for NMP plants [10], ([25], it follows that periodic
controllers can not do so as well. One may, h&wever, be 1interested in
disturbance rejection not at all but at some regular (say even) instants
of sampling. The question then is : Will periodic controllers be able to
provide superior disturbance rejection at such instants, especially for
NMP plants? This problem, moreover, arises naturally from the point of
view of multirate systems in which the input is provided at some regular
intervals of time and the output taken at some other. Now, although
multirate discrete-time systems are, by themselves, a topic of
considerable interest in literature [16], [23], [24], [26], the above

question, as it is, does not appear to have been considered so far

This thesis aims to provide a better understanding of the working
and capabilities of SISO, discrete-time, periodic controllers by filling

up the above gaps. Its main contributions are as follows:

a) It shows that if the MIMO-LTI equivalent, T(z), of a SISO-perliodic

map is represented as T(z)=N(z)/d(z) where N(z) is a polynomial matrix
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and d(z) is a polynomial of degree m(say), then, in addition to T(w)
being lower triangular (as shown in [20]), N(0) will be upper

triangular. Consequently, it obtains a 2m-order realization for T(z).

b) Noticing, however, that the above 2m~order realization does not
utilize all its degrees of freedom, it then considers a
maximum-degrees-of ~freedom m-order controller structure and obtains 1its

equivalent LTI transfer matrix.

c) Next, it obtains the closed~loop transfer function and the
characteristic equation of systems having an LTI plant and a perlodic
controller, and shows that so far as characteristic equation

manipulations are concerned it is enough to consider the controller as

in (b).

d) Regarding GM compensation of strictly proper plants it shows that
(1) if the zero-placement approach is used then the optimum GM would be
obtained for a controller periodicity, M, that is a prime number = (n-r}
where n and r are, respectively, the number of poles and zeros of the
plant, and (ii) in general, the optimum GM 1s obtained for an M lying in

the range (n+l1) =z M = (n-r).

e) It clearly shows that while, generically, an M-periodic controller
can simultaneously stabilize (in fact, achieve pole placement of) M

different plants, M arbitrary.

f) Lastly, it shows that 2-periodic controllers can be used to reject
disturbances at the even/(odd) instant outputs. In addition,

steady-state step command tracking at the odd instants can also be

achleved.
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The thesis is divided into six chapters, the development being

along the following lines:

Chapter 1: This chapter reviews critically the results available in
literature on discrete~time periodic systems. First the result of [20]
regarding the lifting of periodic systems into equivalent (larger) LTI
forms is presented. This result permits one to assume the controller to
be in a MIMO-LTI form and then design 1its elements wusing LTI
methodologies. This form of the controller, however, is not minimal from
the point of view of realization and is not automatically causal. Next,
we present the controller configuration of [7] and the method developed
therein to analyze the stability of the composite system by obtaining
the characteristic roots of the difference equation that has periodic
coefficients. Although the controller of [7} is in a minimal form and,
moreover, can be conveniently represented in the form of a periodic
coefficient transfer functicen, its equivalent LTI representation has not
been obtained. Next, the GM compensation aspect is considered. In this
context, first the methods available for finding the maximum GM
obtainable for a given plant using LTI compensators are presented
briefly, and then the zero-placement and the factorization approaches
available for compensation using periodic controllers are reviewed. It
is seen that periodic controllers are capable of providing infinite GM
compensation to bicausal plants. The same, however, 1is not true for
strictly proper plants, and the question of optimum GM compensation of
such plants using periodic controllers 1is still open. Finally, this

chapter presents the observations of literature regarding simultaneous
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stabilization and disturbance rejection using periodic controllers, and
notes that {a) the simultaneous stabilization capability is not clearly
understood, and (b) even though periodic controllers can not provide
better disturbance rejection that LTI ones at all time Instants, the
possibility of their providing the same at alternate instants has not

been explored.

Chapter 2 : Seeking to obtain a maximum-degrees-of ~freedom
configuration of periodic controllers, this chapter first shows that if
the representation of a general M-periodic controller is sought in the
common denominator form T(z)=N(z)/d(z) where N(z) is an MxM polynomial
matrix and d(z) a polynomial of degree m, then N(O)} must be upper
triangular (besides T(w) being lower triangular). This result leads
naturally to a 2m-order SISO coﬁtroller—canonical form [18] realization
{(with periodic gains). Moreover, in order that the parameter values of
this realization corresponding to a given N(z) can be ascertained, a
result that 1lifts SISO periodic coefficient transfer functions to
MIMO-LTI forms has been developed. (It may be pointed out that in
literature periodic systems have mostly been visualized either in the
form of input-output maps or as MIMO-LTI transfer matrices, and not in
the form of SISO transfer functions with periodic coefficients). The
2m-order realization, however, is found not to utilize all 1its degrees
of freedomn. Consequently, a controller-canonical form
maximum-degrees-of ~freedom mth order structure for the contreller (as
considered in [7)) 1s considered and its equivalent LTI transfer matrix

obtained. Some special cases of this controller, name by, the 1-input
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M-output and the M-input 1-output cases, are then brought out. It |is
seen that these special cases can be realized in a simple fashlon using

only SISO-LTI transfer functions preceded or followed by an MT sampler.

Chapter 3 : This chapter obtains the closed-loop transfer functions
of the LTI plant-periodic controller combination for the general and the
special controller configurations mentioned in the preceding chapter.
Special attention 1is paid to the system characteristic equations
corresponding to these configurations leading to the conclusions that
(a) 1-input M-output and the M-input 1-output controllers automatically
yield zero=-placement type of compensation, and (b) so far as shaping the
characteristic equation is concerned, the mth order controller of [7] is
as powerful as the Mm-order MIMO-LTI one. In this context, the

zero-placement aspect is also discussed in more detail.

Chapter 4 : This chapter considers the problem of optimum GM
compensation of strictly proper plants using periodic controllers via
(a) the zero-placement, and (b} the general factorization approaches,
both of which, as noted earlier, 1involves shaping the characteristic
equation in certain fashions. The conclusicns reached in this regard
have been noted earlier. Sultable examples are also considered to

illustrate the results.

Chapter 5 : Based on a study of the closed-loop characteristic
equation, this chapter shows that it is possible to place the poles of
(and hence stabilize) M arbitrary plants simultaneously using a single

M-periodic controller.
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Chapter 6 : The problem of rejection of disturbances (occurring at
all instants of time) at the even/(odd) instant outputs of NMP, bicausal
plants 1s considered in this chapter. It is shown that such disturbance
rejection, over the whole of the frequency range, can be achieved by a
2-periodic controller that is a “2-periodic inverse" of the plant. The
aspect of evaluation of such 2-periodic inverses 1is also given due
attention. Now, while such controllers would automatically ensure
command tracking at the even/(odd) instants, it is shown that it is also
possible to extend the same to achieve steady-state step command

tracking at the odd/(even) instants as well

In the end we would like to point out some possible extensions of
the present work that are relevant and should prove to be interesting.
First, and obvious, is the extension Qf the present result to MIMO
systems. In particular, the problem of finding a minimal representation
for the MIMO periodic controllers appears to be quite challenging. A
generalization of the concept of "2-periodic inverses" should, on the
other hand, be a simpler job and rewarding as well. Besides MIMO
systems, the other topic which the thesis has kept out of its purview is
that of robust stabilization in the presence of structured/unstructured
plant wuncertainties. (Note that the GM problem, which has Dbeen
considered in more detall, is a special case of this general robustness
problem). This is a topic of ongoing research [3], [4], [19], [27],

[28].
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