


Chapter - 1

Introduction

1.1 Motivation

In this work an attempt is made to create an integrated approach to a class
of systems with random excitations, both external (additive) and parametric
(multiplicative). Usual approaches to stochastic systems start with mathe-
matical models of the underlying systems on which the stochastical natures
of existing signals and parameters are grafted. The morphological aspects
of the physical or abstract systems remain entirely obscured. There grows
a wide gulf between the system and it’s stochastical formulation. In the
present work, the dynamics of stochastical systems is approached keeping
the model of the basic system in the foreground. The bondgraph represen-
tation of a system not only assists in unambiguous representation of system
connectivities, it also provides causal orientation to the system model. The
notion of causality, through bondgraphs, has occupied the central stage in
system modelling. Well developed semantics of causality of the bondgraph
theory provide the modeller with an over all structure of the mathematical
model even before the equations (algebraic and differential) are arrived at.
The modeller gets his conceptualization of the system, ratified by reveal-
ing the model’s physical admissibility and mathematical solvability. After
addressing the issue of stochastical systems’ modelling, this work proceeds
to provide a structured approach to create mathematical models to predict
stochastical moments for a class of systems with polynomial non-linearities.
The ideas and actions to bring this program to a satisfactory end, are fairly
interlaced. Both actions adapted and alternatives, and the supporting ideas
are presented in Fig. /. 1. From this one may get an impression of the arena

in which the present work is placed.
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1.2 A Route from State Space Models to Stochastical
Formulations

1.2.1 State space formulation

Modelling of systems residing in multi-energy domain and arriving at the
system equations is not a trivial task. A system can, nearly always, be con-
ceptually dichotomed in two sets, one of which consists of energy storers,
dissipators and importers and the other signifying the constraint structure.
This constraint structure neither creates nor destroys the power. In 1959,
Prof. H. M. Paynter created a set of powerful symbolisms which expresses
this deep, though abstract interplay of power and energy in a conerete and
discernible form, in a diagram which gives firm grasp of essential dynamics
of the system and aids creation of motion equations and prediction. This
power exchange portrayal of a system is called Bondgraph[86].

Bondgraphs are independent formulation of classical system dynamics which
reveal many obscured structures in it, unify it and most significantly stim-
ulate the imagination of the modeller by manifestation of concrete and ab-
stract ideas in integrated forms. Further, this modelling language provides a
strict law of causation, that identifies the cause and the effect of the dynam-
ical quantities and thus maintains the philosophy that the history function
should always be integrated. Any violation of the laws of causality in a sys-
tem model hampers the system admissibility. Thus causally augmenting a
bondgraph can be used as an analysis tool in order to get an a-priori idea
regarding the validity of the system model, the state vectors of the model,

and the ways in which the system design may be extended to achieve the
desired performance.

One of the major objectives behind causal augmentation of the bondgraph,
besides the analysis of the appropriateness, is to obtain a set of assignment
statements suitable for simulation. Bondgraphs lead to generation of a set of
first order differential equations. Derivation of these equations can be done
using several software, though the apparent form of the output may vary.

Two such popular software are COSMO [125] and .S'YM[s'OL.S"[]]_
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Bondgraph technique could be used for the modelling of stochastical pro-
cesses. The equations of motion of stochastical process obtained from a
bondgraph model could be written in the following form

LX) = F( XW) + [t ()] Vo), (1)

where X(¢) is a n-dimensional state vector of the response coordinates,
f(t, X(1)) is a vector function of the state variables, [o(t, X(¢))] is an n x g
matrix function, and V(#) is a ps-dimensional independent random processes
which influence the model through matrix [o(f, X(t))]. Equation (1.1) is
known as Langevin equation. The vector V(t) is a vector of white noises.
The ‘white noise’ is conceived as a random process with mean value zero
and a constant spectral density on the entire real axis. Such a process does
not exist in the conventional sense, since it wonld have to have the Dirac
delta function as covariance, and hence an infinite variance {and independent
values at all points). Nonetheless, the ‘white noise’ is a uselul mathemati-
cal idealization for describing random influences that fluctuate rapidly and
heuce are virtually uncorrelated for different instants at time,

1.2.2 First stage of approximation
Markov processes

In the past few decades, considerable effort has been expended towards de-
veloping techniques to predict the response of non-linear stochastical systems
subjected to external and parametric random excitations. General class of
stochastical processes defly both tormulation and mathematical approach.
A widely accepted approximation is that the processes are assumed to be
Markovian, or in the context of continnons time systems, infinitely refinable
Markov process. The groundwork for the theory of Markov processes was

laid in 1906 by A. A. Markov.

A stochastic dynamical system is said to he Markovian if the probable (fu-
ture) state of the system at any time t > 7 is independent of the (past)
behaviour of the system at times ¢ < 7, given the present state at time 7.
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For instance, a continuously valued stochastic process X (t) on [0,T] will be a
Markov process if for n = 1,2,3,--- and any sequences 0 <ty < - <1y <T
and zg, Zy,"**, Tn, the following relation exists:

Pr (X(tn) < man(tn-l) = In-1, X(tn—'z) = Ln_2y" ") X(tO) = $0)
= Pr(X(t,) < xa| X {tuz1) = Tur) (1.2)

The relation(1.2) means that probability of X(t,) < @, depends on values
acquired at various time points before the time £,. The Markovian process
is a subclass of this general process which depends entirely on single value
acquired by the process in past. In this sense, Markov process is an one step

memory rail dom process.

The importance of the Markov process resides in the fact that when the ex-
citation of a linear or non-linear dynamic system is ideal white noise, the
response is a Markov process. In such a case transition probability density
function of the process is governed by a partial differential equation, popu-
larly known as Fokker-Plank-Kolmogorov equation. The theory of Markov
process was first applied to linear systems ({31], {97], [146], [147]) to calculate
the probability density function of system response to Gaussian white noise
or shot noise excitation. Recently, Lin ([100], [103]) has justified the approx-
imation of a non-linear stochastical system as a Markov process, The theory
of Markov processes is elaborately discussed in the literature, for example

Doob [48], Bharucha-Reid {15].

Diffusion processes

A Markov process X (t) on [0,T] is called a diffusion process if its transition
probability satisfies the following two conditions:

(i) For every € >0, t, and X (1),

1
lim — p(X(t+dty=y

dt—0 (Zf ]y_ag|>f

X(t) = x)dy = 0. (1.3)

(ii) There exist functions f(t, X (1)) and o(t, X (t)) such that for all € > 0,
t, and X(t),
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lim = [ (y = @)p(X (¢ + ) = 9] X (8) = )y = S0, X (1)

. ]- o 2 2
e — — ‘< = Z’ = t Xt . 1.
lim = [ (= @)X (t + dt) = ylX (1) = 2)dy = (6 X (D). (1)
The function f(t,X(¢)) is called the (infinitesimal) drift coefficient of X(i)
and o*(t, X (1)) is called the (infinitesimal) diffusion coefficient.

Gaussian and Poisson processes

A stochastic process {X(¢),# € [0,T]} is a Gaussian or normal process if the
probability distributions of all orders are completely determined by knowl-
edge of the mean value for all times ¢ and knowledge of the correlation
function for all pairs of times ¢ and #;. The white noise process V(t) in
eq.(1.1) is usually idealized as a Gaussian process. The engineering impor-
tance of a Gaussian process stems from the fact that when a large number
of small independent random effects are superimposed, then, regardless of
their individual distribution, the distribution of the sum of these effects is
approximately Gaussian.

Poisson processes belong to the general class of counting processes which arise
in problems concerning counting the natural numbers. A random process is
said to be a Poisson process if, (1) the arrivals in the future are independent
of the arrival in the past, (2) arrival rates are stationary, and (3) probability
of simultaneous arrivals are negligible.

Wiener processes

A stochastic process that is of great importance in theory and applications
is the Brownian motion or Wicner or Wiener-Levy process. A continuous
parameter process X (¢) on [0, 7] is a Brownian motion process if

o {X(t),t > 0} has stationary independent increments;
o for every t > 0, X(t) is normually distributed;

e for every t > 0, E[X(t)] =0;
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o Pr{X(0) =0} = L.

Stochastic differential equations

For strict application of the Markov vector approach, the white notse pro-
cess Vi(1) in eq.(1.1) must be regarded as mathematical white noise having
a constant spectral density up to infinite frequency. The process become
physically unrealizable as the mean square reaches infinity and correlation
function become dirac delta function [85], [48], [60]. Consequently, eq.(1.1)
has no mathematical meaning. The mathematical difficulty has been resolved

by using an alternative approach.

The white Gaussian noise V(t), can be formally written as the derivative of
Wiener process W(t),
. qd -
V(t) = EVVU‘). (1.5)
dt
As a result of this definition, eq.(1.1) can be written in the form of the

differential equation
dX (1) = J(t, X (1)) di + [o(1, X ()] dW(2). (1.6)

Equation (1.6} is the well known It6 stochastic differential equation. Here,
incremental properties of the Wiener process are :

EldW (1)) = 0,
E[dW (t)dW'(t)] = 1dt,

where 1 is the identity matrix. The process X(f) described by the 1té differ-
ential eq.(1.6) is also known as [td process and the study of the properties of
this process is defined as [t6 caleulus [74]. Equation (1.6) is meaninglul only

if its integral is defined:

(1)~ X(to) = | CFir X (7)) dr + /t: o(r, X(7)) dW (). (L7)

to

The first integral can be defined as an mean-square Riemann integral or as
an ordinary integral for the sample functions. The second integral has not
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yet been defined. Because of the erratic properties of the Wiener process,
it cannot be defined for the sample functions. This integral is specifically
defined as Itd stochastic integral. Doob ([48]) and Kushner ([92], [93]) has
discussed the properties and the calculus of operations involving stochastic
integrals.

Stratonovich [136] has proposed a new definition of a stochastic integral. The
equivalent Stratonovich equation of eq.(1.6) is

do(t, X(1))

dX(t) = f(t,)(’(t))—%a(t,)(’(z)) 0%

di+o(t, X(1)) dW{t). (1.8)

1.2.3 Monte Carlo simulations

A method for estimating the response statistics of randomly excited non-
linear stochastical systems, within any desired confidence level, is based on
sandom computational experiments, popularly known as Monte Carlo sim-

ulations.  For a Monte Carlo simulation, the stochastic model eq.(1.6) is
writlen as,

dX(t) = J(t, X (1)) dt + [o(t, X (1))] R(1), (1.9)

where (1) = dW(t). The elements of R(t) are Gaussian random numbers.
Monte Carlo method consists of generating a large munber (n) of sample
excitations, and processing them to obtain the desired response statistics. In

the past, both analog ([40], [76], [105]) and digital ([129], [53]) computational
systems have been used for Monte Carlo simulations.

Though the Monte Carlo method is applicable to both stationary and non-

stationary response of systems, the main drawback of this method is the
computational cost. The numbers of sample re

: . cords which are necessary for
the estimation of the response st

' atistics, within commonly acceptable levels,
is of the order of five hundred. To gain one additional significant figure in

;t resul% requires a hundredfold increase iy computational cost. Spanos [134]
1as estin ; sre both o : L
as estimated that, for cases where botl) equivalent linearization and numer-

ical simulation can be applied, the computational efficiency of the former will
be order of 100 to 1000 thnes better than the later, When exact solution is



