
ABSTRACT

A compiler translates a source code into a target code, often with an objective
to reduce the execution time and/or save critical resources. Thus, it relieves
the programmer of the effort to write an efficient code and instead, allows
focusing only on the functionality and the correctness of the program being
developed. However, an error in the design or in the implementation of the
compiler may result in software bugs in the target code generated by that com-
piler. Translation validation is a formal verification approach for compilers
whereby, each individual translation is followed by a validation phase which
verifies that the target code produced correctly implements the source code.
This thesis presents some translation validation techniques for verifying code
motion transformations (while underlining the special treatment required on
course to handle the idiosyncrasies of array-intensive programs), loop trans-
formations and arithmetic transformations in the presence of recurrences; it
additionally relates two competing translation validation techniques namely,
bisimulation relation based approach and path based approach.

A symbolic value propagation based equivalence checking technique over
the Finite State Machine with Datapath (FSMD) model has been developed
to check the validity of code motion transformations; this method is capable
of verifying code motions across loops as well which the previously reported
path based verification techniques could not.

Bisimulation relation based approach and path based approach provide two
alternatives for translation validation; while the former is beneficial for verify-
ing advanced code transformations, such as loop shifting, the latter surpasses
in being able to handle non-structure preserving transformations and guaran-
teeing termination. We have developed methods to derive bisimulation rela-
tions from the outputs of the path based equivalence checkers to relate these
competing translation validation techniques.

The FSMD model has been extended to handle code motion transforma-
tions of array-intensive programs with the array references represented using
McCarthy’s read and write functions. This improvement has necessitated ad-
dition of some grammar rules in the normal form used for representing arith-
metic expressions that occur in the datapath; the symbolic value propagation
based equivalence checking scheme is also adapted to work with the extended
model.

Compiler optimization of array-intensive programs involves extensive ap-
plication of loop transformations and arithmetic transformations. A major
obstacle for translation validation of such programs is posed by recurrences,
which essentially lead to cycles in the data-dependence graphs of the programs
making dependence analyses and simplifications of the data transformations
difficult. A validation scheme is developed for such programs by isolating
the cycles in the data-dependence graphs from the acyclic portions and treat-
ing them separately. Thus, this work provides a unified equivalence checking
framework to handle loop and arithmetic transformations along with recur-



xiv

rences.

Keywords: Translation Validation, Equivalence Checking, Bisimulation
Relation, Code Motion Transformation, Loop Transformation, Arithmetic Trans-
formation, Recurrence, Finite State Machine with Datapath (FSMD), Array
Data Dependence Graph (ADDG)


