LIST OF FIGURES

Figure No.		Page
		No.
3.1	Definition sketch of the gas transfer process	43
4.1	Experimental tank with cascade setup	61
4.2	Schematic sectional view of experimental setup for testing of	62
	circular stepped cascade pump aeration system	
4.3	Open well submersible pump with control valve arrangement	63
4.4	Elevation of the circular stepped cascade unit	64
4.5	Plan of the circular stepped cascade unit	64
4.6	YSI 55 DO meter	66
4.7	YSI Professional Plus	67
4.8	Hach Hydrolab Sonde DS5 with Surveyor	68
4.9	Electromagnetic flow meter with display unit	70
4.10	Propeller pump	78
4.11	Propeller	78
4.12	Modified propeller pump	79
4.13	Schematic view of prototype CSCP aerator	79
4.14	MECO 3 phase 4 wire power analyzer	80
4.15	Prototype CSCP aerator testing	80
5.1	Relationship between the Actual and Predicted NDSAE	86
5.2	Contour plots of interactive effects of N and H/R_b on NDSAE	88
	at zero level of V/R_b^3	
5.3	3D Response surface of interactive effects of N and H/R_b on	88
	SAE at zero level of V/R_b^3	
5.4	Contour plots of interactive effects of N and V/R_b^3 on	89
	NDSAE at zero level of H/R _b	
5.5	3D response surface of interactive effects of N and V/R_b^3 on	89
	NDSAE at zero level of H/R _b	
5.6	Contour plots of interactive effects of H/R_b and $V/{R_b}^3$ on	90
	NDSAE at zero level of N	

5.7	3D response surface of interactive effects of H/R_b and V/R_b^3	90
	on NDSAE at zero level of N	
5.8	Normal Probability of Internally Studentized Residuals	92
5.9	Plot of Internally Studentized Residuals vs. Predicted	92
	Response	
5.10	Variation of SOTR with discharge (Q) for different cascade setup	98
5.11	Variation of P with discharge (Q) for different cascade setup	98
5.12	Variation of SAE with discharge (Q) for different cascade setup	99
5.13	Variation of SOTR with bottom radius (R_b) for different cascade setup	100
5.14	Variation of P with bottom radius (R_b) for different cascade setup	101
5.15	Variation of SAE with bottom radius (R_b) for different cascade setup	101
5.16	Variation of NDSAE with Re for different sizes of cascades	103
5.17	Variation of NDSAE with Fr for different sizes of cascades	104
5.18	Variation of NDSAE with Re and Fr for different sizes of	104
	cascade	
5.19	Variation of Ne with Re for different sizes of cascades	106
5.20	Variation of Ne with Fr for different sizes of cascades	106
5.21	Variation of Ne with Re and Fr for different sizes of cascades	107

LIST OF TABLES

Table No.		Page No.
2.1	SOTR (kg O_2/h) and SAE (kg O_2 kW/h) values for electric aerators used in aquaculture	16
3.1	Description of variables along with their notations and dimensions	53
4.1	Central Composite Rotatable Design (CCRD) of experiments: Series G	75
4.2	Schedule of experiments to optimize the dynamic parameters: Series D	76
4.3	Schedule of experiments for testing of prototype CSCP aerators: Series P	77
5.1	Experimental results for optimization of geometrical parameters: Series G	82
5.2	ANOVA analysis of the Response Surface Quadratic Model	84
5.3	Results of regression analysis of the experimental design	85
5.4	Optimum values of geometric parameters for circular stepped cascade	91
5.5	Performance of CSCP aerator ($R_b = 0.75$ m): Series D1	95
5.6	Performance of CSCP aerator ($R_b = 0.90$ m): Series D2	95
5.7	Performance of CSCP aerator ($R_b = 1.05$ m): Series D3	96
5.8	Performance of CSCP aerator ($R_b = 1.20$ m): Series D4	96
5.9	Performance of four different prototype CSCP aerators: Series P	110
5.10	Comparison of SOTR values for cascades tested with different pumps	110