CHAPTER 1

INTRODUCTION

1.1 Basic and Historical review of Thermoelasticity:-

Most materials undergo appreciable changes 1in volume when
subjected to variations in temperature. If the thermal expansions or
contractions, due to temperature variations, are not freely
admitted, some internal forces develop which are called thermal
stresses. Conversely, a change in volume is attended by a change in
temperature. When a given element 1s compressed or dilated, the
volume change is accomﬁanied by heating or cooling. The domain of
thermoelasticity encompasses the study of the influence of the
temperature of an elastic solid upon the distribution of stress and
strain, and of the inverse effect of the deformation upon the
temperature distribution. In other words, thermoelasticily describes
the behavior of elastic bodies under the influencg of non-uniform

temperature fields.

In various {fields of engineering sciences specially in the
design of nuclear reactors, air-plancs, missiles, stream turbines,

internal combustion turbines, reciprocating internal combustion



engines, high pressure gas compressors and machines which deal with
heat conversion, the thermal stress distributions play a very
important role. A knowledge of the distribution of thermal stresses
is essential to the designers for studying the strength of the

material affected by the temperature distribution.

Generally, the change of body temperature is caused not only by
the external and internal heat sources but also by the process of
deformation itself. Under normal conditions of heat exchange, the
heat flux produced by the deformation gives rise to unsteady
heating. The change of temperature being small, the corresponding
terms in field equations and coupling terms in heat conduction
equation; are neglected in the Classical Dynamical Uncoupled theory
of thermoelasticity. This theory has two shortcomings. The first and
most obvious one is that the elastic deformation has no effect on
the temperature field, and the other is that the theory predicts an
infinite speed of propagation for heat waves as well as for

mechanical disturbances.

Duhame]l [20,21] postulated the influence of temperature on the
elastic bodies and gave the stress-strain relations. Neumann [54]
also gave a stress-strain-temperature relations, similar to Duhamel,

which are so-called as Duhamel-Neumann’s relations.

Biol [6] in 1996 derived the equations of the coupled theory of
thermoelasticity by correcting the eqguations of motion, which give
rise to the Coupled equations, thus taking care of the f{irst

shortcoming. But the heat equation, in the Coupled theory, still



remains parabolic and hence predicts an infinite speed of
propagation for heat waves and mechanical disturbances, which is a

physically unreasonable result.

Tc take care of this paradox, two theories of generalized
thermoelasticity are proposed which allow a finite velocity for the

propagation of thermal and mechanical disturbances:-

a) Lord and Shulman [40] introduced the theory of generalized
thermoelasticity for an isotropic body based on a new law of heat
conduction, including both the heat flux and its time derivative,
replacing the conventional Fourier’s law. This theory takes into
account the time needed for acceleration of the heat flow, which is
known as relaxation in time or second sound effect. The heat
equation associated with this theory is a hyperbolic type and hence,
eliminates the paradox of infinite speeds of propagation inherent in

both the Uncoupled and the Coupled theories of thermoelasticity.

b) Green and Lindsay [25) presented a theory of thermo-
elasticity with certain special features that contrasts with the
previous theory having a thermal relaxation time. In Green and
Lindsay’s theory Fourier’s law of heat conduction is unchanged
whereas the <classical energy equation and Duhamel-Neumann’s
relations are modified, by introducing two relaxation times in the
governing equations in place of one relaxation time in Lord and

Shulman’s theory.

One of the important differences between the two theories is

that, the energy equation of Lord and Shulman’s theory depends on
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both the <strain velocity and strain acceleration whereas the
corresponding equation of the Green and Lindsay's theory depends

only on the strain velocity.

Green in [26] supplemented the Green and lLindsay’s theory and
proved the uniqueness of the equations and also studied the

propagation of acceleration waves.

The Lord and Shulman’s theory was extended by Dhaliwal and
Sherief [19] to include both the effects of anisotropy and the

presence of heat sources.

The uniqueness of the solution of Lord and Shulman’s equations
for the isotropic case was studied by Ignaczak [33,34) and for the

anisotropic case by Sherief and Dhaliwal [65].

Most often the solutions obtained using Lord and Shulman’s
theory differ little quantitatively from those obtained using either
the Coupled or the Uncoupled theories, though, the solutions differ
qualitatively. However, for many problems steep heat gradients, and
when short time effects are sought, this theory gives markedly
different values than those predicted by any of the other theories.
This is the case encountered in many problems in industry especially
inside nuclear reactors where very high heat gradients act for very

short times.

The main difficulty encountered in solving problems of Coupled
or generalized theory of thermoelasticity is that of inversion of

the Laplace transforms used. This is mainly due to the fact that the



contour integral of Laplace transform’s complex inversion formula

contains complicated branch points in its integrand.

among the methods used to invert the Laplace transforms in
thermoelastic problems is the method of asymptotic expansions valid
for small values of time. Hetnarski [29,30] used this method to
obtain the solution for a thermal shock half-space problem and to
solve a spherically symmetric problem with a point source of heat,
both in the context of Coupled thermoelasticity. For generalized
thermoelasticity Sherief and Dhaliwal [668] and Sherief [67] used the
same method to solve a thermal shock problem and to obtain the
fundamental solution for the spherically symmetric problem,
respectively. Sherief and Anwar (88} treated the cylindrically

symmetric case.

Another method of inversion for the Laplace transforms in
thermoelastic problems is the operational method. Hetnarski [31]
used this method successfully to obtain the solution of the
Uncoupled problem in the form of series of functions. Sherief and
Ezzat [71] obtained the solution of the generalized problem of
thermoelagticity in the form of an infinite series of functions by
using the same technique, in the  context of Lord and Shulman’s

theory.

The equations of lord and Shulman’s theory for one dimensional
problems including heat sources were cast into matrix form by
Sherief [70] using the state space and Laplace transform techniques.

The resulting formulation is applied to a problem for the whole



space with a plane distribution of heat sources. It is also applied
to a semispace problem with a traction-free surface and plane
distribution of heat sources located inside the medium. The
inversion of the Laplace transforms is carried out using a numerical
approach  Numerical results for the temperature, displacement and

stregse distributions are given for both problems.

Nariboli [51] discussed the effect of thermoelastic coupling on
the passage of disturbance through an infinite medium with a
spherical cavity when its temperature is suddenly changed. The hoop
stress at the cavity is seen to reach its steady-state value
instantaneously; it then rises to a maximum, falls below the
steady-state value and approaches it again. The effect of coupling
is seen to reduce this fluctuation of stress throughout and also to

reduce the shock character of the disturbance appreciably.

Herrmann [28] extended the variational principles for
displacements, stresses and for both displacements and stresses in
isothermal elasticity to the coupled processes of thermoelasticity
and heat conduction in a threc dimensiconal anisotropic body. It is
established that in a stable system the character of these
principles concerned with a minimum, maximum and stationary value

problem.

Norwood and Warren [58] employed the generalized theory of
thermoelasticity to study transient to step time inputs of strain,
temperature and stress uniformly distributed over the free surface.

The solution is obtained by the use of the Laplace transt'orm with



respect to time and the sine transform on space.

Wadhwan [81] considered a spherical cavity in an infinite
homogeneous isotropic body, under the action of a general time
dependent normal stress and a time dependent temperature, in the

context of fLcrd and Shulman’s theory

Mokrick and Pyrev [48] investigated the analytic properties of
solutions of fundamental dynamical problem of the generalized
thermoelasticity, based on Lord and Shulman’s theory, with
finite-rate of heat propagation taken into account. The problem of

thermal shock at the surface of a spherical cavity is also studied.

Muller [49,50] obtained such a generalization of coupled
thermoelastic theory by analyzing the modified form of entropy

production inequality.

Chandrasekharaiah [14] studied one dimensional disturbance in a
half-space due to a thermal impulse on the boundary based on Lord

and Shulman’s and Green and Lindsay’s theories.

Chandrasekharaiah [13] has also studied the one dimensional
dynamical disturbances in a thermoelastic half-space with plane
boundary due to step strain or temperature on the boundary in the
context of the Green and Lindsay’'s theory. The solution is obtained
by the use of integral transforms. Short and long time
approximations of solutions are deduced and the exact

discontinuities in the mechanical and thermal fields arc analyzed.



Chandrasekharaiah and Murthy [15] considered the thermoelastic
interactions caused in a homogeneous and isotropic unbounded body
with a spherical cavity due to a harmonically varying thermal field

applied to the stress—free boundary of the cavity.

Furukawa, Noda and Ashida [23,24] studied the gencralized
theories of thermoelasticity for an infinite body with a cylindrical

hole and for an infinite solid cylinder.

Wang and Dhaliwal [83] obtained the general solution of the
generalized thermoclastic equations for arbitrary distribution of
the body forces and heat sources in an infinite body. They found the
short time solutions for the cases of impulsive body force and heat

source acting at a point.

Yang, Wang and Chen [84] analyzed the transient response of
one-dimensional axisymmetric quasi static coupled thermoelastic
problems. Using the Laplace transform with respect to time, the
general solutions of the governing equations are obtained in the

transform domain.

Bahar and Hetnarski [5] and Anwar and Sherief[4] introduced the
state space formulation in coupled and generalized thermoelasticity

in the absence of heat sources, respectively.

Misra el al. [45] solved a problem of an infinite solid
continuum of an anisotropic, viscoelastic material having a
cylindrical cavity in the context of Lord and Shulman’'s theory. They

also [44] gave the solution for the induced temperature and stress



fields in an infinite transversely isotropic solid continuum with a

cylindrical hole.

Misra, Samanta and Chakrabarti [47] discussed é problem of a
half space under the influence of an external primary magnetic field
and an eievated temperature ficld arising cul of a ramp-type heating
of the surface. They found that the stress distribution and the
secondary magnetic field are almost independent of the thermal
relaxation time but are significantly dependent on the mechanical

relaxation time.

Misra, Chatopadhyay and Samanta [46] studied the generation of
stress in a spherically aelotropic homogeneous solid continuum with

a spherical cavity.

Misra and Samanta [43] discussed the thermal shock due to
sudden heating of the bounding surface of a viscoelastic half-space,

they solved the problem with one relaxation time.

Takeuti and Furukawa [79] discussed a thermal shock problem in
a plate, they found that il is more important to consider the
coupling effects than to consider the inertia effects for thermal
shock problems because the coupling effects are much larger than the

inertia effects for ordinary metals.

Sternberg and Chakravorty [76] considered the problem of an
unbounded thermoelastic body with a spherical cavity whose stress
free boundary is subjected to a step in temperature. They solved the

problem in the context of the uncoupled theory.
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Erbay and Suhubi [22] studied the longitudinal wave propagation
in a circular infinite cylinder, they obtained the dispersion
relation for the case in which the temperature is kept constant on
the surface of the cylinder in the context of Green and Lindsay’s
theory =and Lord and Shulman’s theory. Suhubi [781 solved the same

problem in Coupled thermoelasticity.

Sherief and Anwar [69] considered the problem of a thick plate
subjected to a moving heat source on each face within the context of
the theory of generalized thermoelasticity with one relaxation time.
They obtained the approximate expressions for the temperature,

thermal stresses and displacement.

Chen and Chu [16] analyzed the transient thermal stress
distribution of a finite composite hollow cylinder which is heated
by a periodically moving line source on its inner boundary and

cooled convectively on the exterior surface.

Noda [55,56,57] investigated the transient thermoelastic
contact problem in a long circular cylinder, in a short length
circular cylinder and in a cylinder with a position dependent heat

transfer co-efficient, respectively.

1.2 Discussion of thermoelastic waves:-—

The presence of a discontinuity in the material properties
generally produces a significant influence on systems of waves

propagating through the medium. Consider, for example, the



propagation of plane harmonic waves in an unbounded medium
consisting of two joined elastic half-spaces of different material
properties. In such a composite medium, systems of plane waves can
be superposed to present an incident wave in conjunction with
reflections and refractions at the interface separating the two
media. The wave which emanates from infinite depth in one of the
media is called the incident wave. The question then is what
combination of additional waves is required in order that the
stresses and the displacements are continuous at the interface.
These additional waves are called reflected and refracted waves. For
the special case of an elastic half-space which adjoins a medium
which does not transmit thermal and mechanical waves, the system of

waves consists of course of incident and reflected waves only.

Most of the investigations are concerned with plane waves
representing disturbances that are uniform in planes of constant
phase, i.e., in planes normal to the propagation vector. For bodies
with a surface of material discontinuity there are, however, plane
waves which are not of constant phase. These waves, which are called
surface waves, propagate parallel to the surface of discontinuity.
They have the property that the disturbance decays rapidly as the
distance from the surface increases. For the free surface the
surface waves are known as Rayleigh waves [64], ‘and the surface
waves al an interface of two media are called Stonely waves [77]. In
the case of the motion of the particles of the medium being parallel
to the direction of propagation, the wave is called a Longitudinal

wave, and the rotation vanishes, so this type of wave is alsc often



called a dilatational wave, an irrotational wave, a pressure wave,
or a P wave (primary, pressure). But in the case of the motion being
normal to the direction of propagation, the wave 1s called a
transverse wave, a rotational wave, a shear wave, or an S wave
(secondary, shear). When an S wave 1is polarized, so that all
particles of the medium move horizontally during its passage, wave
is then termed as an SH wave and; when the particles all move in «
vertical plane containing the direction of propagation, the wave is

known as an SV wave.

Problems concerning with the propagation of thermoelastic waves
in an elastic media have received the attention of many

investigators.

Nowacki [60] discussed the propagation of longitudinal waves in
an unbounded thermoelastic medium and expressed the temperature and
the displacement potential, at any point inside the medium in terms
of  surface 1integrals of functions involviﬁg temperature and

displacement potentials and their normal derivatives.

Lockett [39] investigated the propagation of surface waves in a
thermoelastic half space in the context of coupled thermoelastic
theory. He studied the effects of thermal properties of the medium

on the propagation of Rayleigh waves.

Chadwick and Windle [9] studied the effects of heat. conduction
upon the propagation of Rayleigh waves in a semi-infinite elastic

solid for two special cases:



i) when the surface of the solid is maintained at constant
temperature, and
ii) when the surface is thermally insulated.

This problem has again been reconsidered by Chadwick and Atkin [12].

Nariboli and Nayayadhish [52] discussed the one-dimensional
wave propagation as an initial and boundary value problem on the

basis of coupled thermoelastic equations.

Chow [18] studied the mean waves in a medium with random
inhomogeneities within the theory of 1linear coupled thermo-
elasticity. The frequency equation is obtained and analyzed for some
special cases. He discussed the problem with random boundary
conditions or a randomly varying boundary. Different perturbation

methods and two examples are provided.

Chadwick and Seet [10] investigated the thermoelastic wave
propagation in a transversely isotropic heat conducting as well as
non heat conduction elastic materials. They established that in
these types of media three types of elastic waves, namely
quasi-longitudinal (QL), quasi-transver (QT), and a purely transver
(SH) wave can propagate. Out of these three waves only first two

types can be influenced by thermoelastic coupling effects.

Lord and Lopez [41] considered wave propagation in
thermoelastic solids al very low temperature when wave type effects

are likely to be more prominent.

Wadhwan [82] studied the properties of plane harmonic waves by
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using the generalized theory of thermoelasticity. It is found that
the known results have been modified by introducing the time needed

for the acceleration of heat flow.

Jeffreys [35] and Gutenberg [27] considered the reflection of
clastic plane waves at a solid half-space. Chadwick and Sneddon (8]
studied the propagation of thermoelastic plane waves. Knott [36]
derived the general equations for reflection and refraction al plane

boundaries.

Sinha and Sinha [72,73] studied the reflection of thermoelastic
waves at a solid half-space, and the reflection and refraction of
thermoelastic waves at interfaces of two semi-infinite media in
contact, with one relaxation time. They also discussed the
velocities of the propagation of Rayleigh waves and Stonely waves

[74,75].

Nayfeh and Nasser [53] used the equations of Lord and Shulman

to study the plane harmonic waves in an unbounded medium.

Agarwal [2,3] extented the Knowles [37] representation theorem
for harmonically time dependent free surface waves and plane waves
on a homogencous, isotropic elastic half space in the context of

Lord and Shulman’s and Green and Lindsay’s theories.

Choudhuri [17] studied the effect of rotalion and relaxation
times on plane waves in the generalized theories of thermo-

elasticity.



Indeed, if we go to study any problem in elasticity,
thermoelasticity or wave propagation in elastic bodies, we must
mention some of the important books in these branches like, Love
142), Lekhnitskii [38]), Timoshenko and Goddier [80], Parkus [63],
Hetnarsk?® [321, Boley and Weiner [7), Nowacki [59,61], Nowinski [62]

and Achenbache [1].

1.3 Basic Equations and Boundary conditions of Thermoelasticity: -~

In a continuous body, the change in the relative position of
the points is called a deformation. The stress is the limit of the
ratio of traction upon the elementary erea to the area, as this
elemental area goes to zerc. By the application of suitable forces
on a body, both its size and shape can be made to change. When the
forces have ceased to act and if the body regains its size and
shape, the body is said to be elastic and the property of recovery
to an original size and shape is known as elasticity. A body is said
to be perfectly elastic if it regains its size and shape completely

when the forces producing the deformation are removed.

As far as the elastic properties are concerned, all bodies may
be divided, on the one hand, into homogeneous and- non-homogeneous,
and on the other hand, into isotropic and anisotropic. By a
homogeneous body, with regard to its elastic properties, is meant
one whose elastic properties are the same at different points. An

isotropic body ts one in which these properties are the same for all



directions drawn through a given point.

The relation between the strain and stress is obtained by
Hook’s law which states that the components of stress at any point
of a body is a linear function of the components of strain at the
same point. And the coefficients of this function are called the

elastic constants.

1.3.1 Basic Equations: -

We consider a homogenecus, isotropic and thermally conducting
elastic medium. We assume that heat sources and external force
loading are absent, and take a fixed rectangular cartesian
coordinate system (X,Y,Z). In the linearized theory of elasticity,
by small deformations we mean that they are small relative to the
dimensions of the body. The deformation 1is described in a very

simple manner by the small strain tensor €, with components
(u +u, ). (1.3.1)

Where u, are the components of the displacement vector and a comma
followed by a subscript denotes partial differentiation with respect
to the corresponding coordinate. It is evident that sij=c)i, i.e. ¢

is a symmetric tensor of rank two.

The fundamental equations of the classical dynamical coupled
theory of thermoclasticity can be written in the form:
o Fquations of motion

+ o = pi i,3=1,2,3. (1.3.2
Tyy,y PP, : !



& Heat conduction equation
: : - . (1.3.3)
che Ty e0 uk,k ke,x1

© Duhamel-Neumann’s relations

= - ; 1.3.4
° Auk,k61j+ i (u1,1+u),1) y e 61]' ( )

where GXJ are the components of the stress tensor, Fl are the
components of body forces per unit mass, ulare the components of the
displacemeni vector, 6 is the temperature, 90 is the initial
temperature, A,pu are Lame’s constants, k is the thermal
conductivity, o is the density, cE is the specific heat at constant
deformation, ao is the co-efficient of linear thermal expansion, 61)

is the kronecker delta and y=a0(3h+2u). A superposed dot  denotes

differentiation with respect to time.

To distinguish between any problem of thermoelasticity, we
observe that, in the presence or absence of the inertia term (pﬁi)
and the Coupled term (y 0, ﬁk'k), we say that the problem is Dynamic
or Quasi-static and Coupled or Uncoupled problemn, respectively.

Moreover, in the case of the basic equations being independent of

time, the problem is said to be Static.

Eliminating U’J from Equations (1.3.2) and (1.3.4) and rewrite
Equation (1.3.3), we find two coupled partial differential equations

for temperature and displacement in the form

2 o )
(A+u)uk'kl+uv u -y G’i = P (1.3.5)
chO +y 90 u o, kO,i‘. Fﬂwwmwmm~£}.3.6)




For fLord and Shulman’s theory, depending on the modifications
in the Fourier’s law, we get the following two equations after
eliminating 01)

: 24 - = pu (1.3.7)
(A+u)uk‘ki+uv u -y E),1 PU, .

) L Byen A
ng(9+ 08)45 Bo(uk,k tu

)= kO , (1.3.8)
0 k,k ,

i1

where to ig the first relaxation time.

However, in Green and Lindsay’s theory the basic equations will
be

2 i -
- = . . 3.9
(A+“)uk,ki+“v u -y (6+t16),i PU, (1 )

. = ‘ 3.1
ch(8+t06)+y Qouk,k ke,li' (1 0)

where tl is the second relaxation time.

So we combine the basic equations for the three different
theories of generalized thermoelasticity in the following two

partial differential equations for displacement and temperature

2 ; .
(A+p)uk’kl+uv u -y (6+t16)’1 = pu. (1.3.11)

ch(0+t06)+y eg(uk,k+t06uk,k)= ke’ii. (1.3.12)

Here, the wuse of Kronecker’s delta, &, makes the above

fundamental equations possible for the three different theories:-

(1) Classical Dynamical Coupled theory (1956) (C-D)



(3) Green and Lindsay’s thecry (1972) (G-L)

t =t =0, 3=0.
1 0

In the absence of body forces, the displacement equations of
motion follow from Equation (1.3.2) as

{(A+n) =50 . 1.3.13
o (A+p} U p U ( )

»

In vector notation Equation (1.3.13) can be written as
uWou + (A+p)V V.u = p . (1.3.14)
Let us consider a decomposition of the displacement vector into
its potential and rotational functions in the form
u = grad ¢ + curl y, (1.3.15)
substituting into Equation (1.3.14), we obtain the following two
equations

72¢ = ,iz_, 8¢/ 82, vy = ’1-2- a%psot?, (1.3.16)

o B

1/2 1/2
where « =[(A+2u)/pl and B =[u/pl are the longitudinal and

transverse wave velocities, respectively.

1.3.2 The Boundary Conditions: -

On the surface S of the undeformed body, the boundary
conditions must be prescribed. The following boundary conditions are
most common:

(a) Displacemeni boundary conditions: the threc components u are

prescribed on the boundary.

(b) Traction boundary conditions: The three traction components Ll
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are prescribed on the boundary with unit normal n. Through

Cauchy’s formula

t =¢ n, (1.3.17)
! 113

this case actually corresponds to conditions on three components

of the stress tensor.

(c) Displacement boundary conditions on part S1 of the boundary and

traction boundary conditions on the remaining part S—S{

The initial conditions specify the 1initial temperature
distribution throughout the body. In most problems, the initial
temperature is constant. There are five principal boundary
conditions which are used in the mathematical theory of heat
conduction as idealizations of actual physical processes. Over any
portion of the bounding surface of the body, one of the following

conditions is usually used:
(1) Prescribed surface temperature:

o(p,t) = f(p,t), (1.3.18)

where the point p is on the surface and f(p,t) is a prescribed

function.

(2) Prescribed heat input:
k [a6(p,t)/dn] = qlp,t), . (1.3.19)

where is the outward normal to the surface at the point p

(3) Perfectly insulated surface:
By definition, a perfectly insulated surface is one across which

therce is no heat flux and thus
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(4)

(5)

80(p,t)/dn = 0. (1.3.20)

Convection boundary conditions:
In many problems, the heat flux across a bounding surface may be
taken as proportional to the difference between the surface
temperature 6(p,t) and the known temperature 00 of  the
surrounding medium. Thus

k 86/6n = h [00— 8(p,t)], (1.3.21)
where h is termed as the boundary or film conductance and may
vary with space and time in a prescribed manner, h is also

called film (or surface) heat transfer co-efficient.

Two solid bodies in contact:

If the surface bodies are in perfect thermal contact, their
temperature at thal surface must be the same. Also, the heat
flux leaving one body through the contact surface must be equail
to that entering the other body. Thus for a point P on the
contact surface

Gl(p,t) = 92(p,t), (1.3,22)
k, [ 881(p,t)/3n 1 = k, [ aoz(p,t)/an 1, (1.3.23)

where subscript 1,2 refer to the two bodies and n is the common
normal to the contact surface at p. If there is an imperfect

thermal contact between the two bodies, then

k1 [ 6Gl(p,t)/6n1] = (1/R) | O?(p,t) - Ol(p,t)], (1.3.24)
k1 [ 661(p,t)/6n1] =k [ 662(p,t)/6n1]. (1.3.25)
where R is the contact resistance = 1/h and rHiS the outward

normal referred to body 1, to the contact surface at p.
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1.4 An Overview of The Thesis:~

The thesis has been organized into eight Chapters:-
Chapter 1; Introduction.

Chapter- 2; Generalized thermoelastic interactions for an infinite

body with a spherical cavity.

Chapter 3; Thermal stress distribution for an isotropic solid sphere

with two relaxation times.

Chapter 4; Thermal stress in a harmonic field for an infinite body

with a circular cylindrical hole.
Chapter- 5; Reflection of thermcelastic waves at a solid half-space.

Chapter 6; The propagation of thermoelastic waves at an interface of

two semi-infinite media.

Chapter 7; The effect of the second relaxation time on the

propagation of Stonely wave.

Chapter 8; Conclusions and scope for the future work.

The main objectives of this study were:-

1- Combining the three different theories in one system of equations
to help solve any problem in the generalized thermoelasticity.

2- Comparing the thermal stress distributions in the different
theories and discussing the differences due to the presence of
the first and second relaxation times.

3- Studying the effect of the second relaxation time in Green and

Lindsay’s theory on the propagation of thermoelastic waves.
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In Chapter 11, thermoelastic interactions caused in a
homogeneous and isotropic infinite body with a spherical cavity are
considered for the two different theories of generalized
thermoelasticity, that is, Lord and Shulman's theory and Green and
Lindsay’s theory. The solution of the problem is obtained in the
context of two different cases:-

(a) the boundary of the cavity is constrained and is maintained

at a constant temperature.

(b} the boundary of the cavity is stress-free and is maintained

at a constant temperature.

By using the Laplace transform technique, the analytical expressions
for temperature, displacement and thermal stresses are obtained for

small time.

Fipally, the numerical values of temperature, displacement and

stresses are computed; and the results are presented in the form of

graphs to help compare the different theories. From the results we

see that: -

© No difference between the two theories (Lord and Shulman’s theory
and Green and Lindsay’'s theory) appears in the temperature
distribution.

e For the displacement and stresses, there is a difference between
the threec theories, especially in displacement distribution.

e The temperature increases with the increase of the first
relaxation time. However, the change due to the second relaxation
time in Green and Lindsay’s theory is rather small.

e The effect of an increase in the second relaxation time is very
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clear in stress distributions.

© For the constrained body, in the just vicinity of the cavity, the
displacement, temperature or stresses are not so much affected by
the first relaxation time but at other positions in the medium die
out much faster with an increase in the value of the first
relaxation time in Lord and Shulman’s theory.

e In the second boundary condition, the radial stress diminishes for

increasing values of the first relaxation time.

In Chapter 11I, the distributions of thermal stress and
temperature for a homogeneous, isotropic solid sphere are obtained,
based on Lord and Shulman’s and Green and Lindsay’s theories. The
solution of the problem is carried out in two different cases:-

(a) the boundary of the sphere 1is maintained at a constant

temperature and the displacement on the surface is constrained.

(b) the boundary of the sphere is maintained at a constant heat

flux and the displacement on the surface is constrained.

The problems are analyzed by means of the Laplace transform
technique, which on 1inversion gives the approximate analytical
expressions for temperature, displacement and stresses for small
time. We calculate the numerical wvalues, and present the results
graphically to see the effect of the first and second relaxation
times in the two different theories and compare the results with the
Classical Dynamical Coupled theory. We observe thatl:-

& No difference between the two different theories (Lord and

Shulman’s and Green and Lindsay’s theories) appears in the
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temperature distribution.

e The effect of the second relaxation time is to decrease the radial
stress distribution in the just vicinity inside the sphere and
increase it to vanish afterwards rather fast. The hoop stress
increases with the effect of the second relaxation time in Green
and Lindsay’s theory.

@ The increase of the first relaxation time in Lord and Shulman’s
theory is to decrease the values of displacement and thermal
stresses. But the effect on the temperature field, is to increase
it.

® In the second problem, the effect of the first and second
relaxation time is clear in the distributions of displacement,
temperature and thermal stresses. The difference in the results is
very significant compared with the Classical Dynamical Coupled
theory due to constant heat flux at the surface of the sphere.

This is in agreement with as suggested by Sherief [70].

In Chapter [V, thermoelastic interactions caused in a
homogeneous, isotropic infinite body with a circular cylindrical
hole due to the effect of bharmonic field are discussed. The
analytical expressions for temperature, displacement and thermal
stresses are obtained in the three different theories in the context
of small and large frequency. A numerical example has been given and
the results presented graphically to compare the different theories.
We f'ind that:-

@ In the case of small frequency, there is small effect for the

first and second relaxation time in the two different theories of
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generalized thermoelasticity.

@ In the case of large frequency, the temperature distribution in
Lord and Shulman's theory coincides with that in Green and

Lindsay’s theory.

In Chapter V, the effect of the two relaxation times, on the
reflection of thermoelastic waves at a homogeneous, isotropic and
thermally conducting elastic solid half-space is studied. We deal
with two cases of boundary conditions, (i) stress—free surface and
(11) rigid surface, and in each case we discuss the incident wave to
be either a P wave or an SV wave. The amplitudes of the reflection
co—efficients and the expressions for the partition of energy are
obtained in the different cases.

Finally, we find a numerical solution in the case of sand stone, and
present the results graphically for the partition of energy with
various values of the angle of incidence. From which we conclude
that: -

© The partition of energy is independent of the wave number of the

incident wave and depend only on the material constants.

® In the absence of thermal coupling the second relaxation time does

not affect.

e While the P wave is affected by the presence of the thermal wave,

the SV wave remains unaffected.

¢ The increase of the second relaxation time is to reflect more
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energy as P wave and consequently less energy as SV wave.

® The effect of the increase of the first relaxation time is to
reduce the effect of the second relaxation time.

e The effect of the second relaxation time is particularly felt at

angles of incidence greater than HOO

In Chapter VI, the effect of the second relaxation time in
Green and Lindsay’s theory on the reflection and refraction of
thermoelastic waves at an interface of two semi-infinite media in
contact 1s studied. We deal with four cases of interfaces:-

(I) Liquid-Liquid,

(II) Liquid-Solid,

(III) Solid-Liquid,

(IV) Solid-Solid.

In Cases (III) and (IV), we discuss the incident wave to be a P wave
or an SV wave. We obtain the amplitudes of the reflection and
refraction co-efficients and we find the analytical expressions for
the partition of energy. For the numerical results we take the
following:

(1) Petroleum-Water,

(II) Water-Sand Stone,

(I1I) Sand Stone-Water,

(IV) Granitc-Sand Stone,

for the four different cases of interfaces, respectively. Finally,
the results represented graphically to help compare with that of
Lord and Shulman’'s theory, to see the effect of the second

relaxation time. From which we conclude the following important.
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points:

(]

®

®

The partition of energy is independent of the wave number of the
incident wave, and depends only on the angle of incidence and the
material constants.

When the first relaxation time increases, the effect of the second
relaxation time reduces in the different interfaces.

In Liquid-liquid interface, the increasc of the first and second
relaxation time is to reflect more energy as a P wave, especially
for angle of incidence greater than 60°.

In Liquid-Solid interface, the increase of the first and second
relaxation time is to reflect more energy as a P wave, especially
for angle of incidence greater than 30°. However, the effect in
the other two parts of the partition of energy is rather small.

In Solid-Liquid interface, we conclude that:

a) In the case of incident P wave, the increase of the first
relaxation time is to reflect more energy as P wave and less
energy as SV wave, especially at angle of incidence = 50°

b) In the case of incident SV wave, the increase of the first
relaxation time is to reflect less energy as P wave and more
energy as SV wave, especially at angle of incidence =z 25°

In Solid-Solid interface, we have two important points:

a}) In the case of incident P wave, the increase of the first
relaxation time is to refract less energy as P wave especially at
angle of incidence = 400,

b) But in the case of incident SV wave, the 1ncrease of the first

relaxalion lime is to refract less energy as SV wave for angle of
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incidence 1 z 25°.

In Chapter II, the effect of the second relaxation time in
Green and Lindsay’s theory on the velocity of Stonely wave is
discussed. The characteristic equation for the velocity of Stonely

wave I the three different theories has been given We also

calculate the variation of the density ratios for different media.

In Chapter VIII, the important results and observations from
this thesis are concluded. The general conclusions are divided into
two parts:-

1) The effecl of the first and second relaxation time on a boundary
value problems.

2) The effect of the first and second relaxation time on the
propagation of thermoelastic waves.

In the last of that chapter, scope of the future work is given.
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