CHAPTER 1

INTRODUCTICN

1,1 GRAPH ALGORITHMS AND PARALLEL COMPUTATION

Graphs are essential tools for understanding and solving
problems in diverse disciplines. For example, graph theoretic
models are convenient for network analysis in electrical
engineering, planning of schedules in operations research,
identification of chemical compounds in organic chemistry,analysis
of Markov chains in probability theory, organizatioﬁ of data
structures in computer science. In fact, applications of graphs
have a very wide range (see,e,g.,[l67,177]) and cannot probably
be listed exhaustively. Graphs arising out of feal?life problems,
are often very large and cannot be analyzed without the aid of
computers. Naturally efficient algorithms for graph theoretié

problems are of immense practical importance.

In order to answer almost any non-trivial question about a
graph, every arc and in the process every node of the graph must
be examined at least once.vFor exanmple, in order to determine
whether or not. a graph is connected, every arc of +the graph has
to be checked. In case the graph is declared disconnected ignoring
an arc, it is quite likely that the ignored arc might have made
the graph connected. The same can be said about the questions

concerning separability, planarity and the like.

There are two importént ways to search the arcs of a graph
viz., depth-first search and breadth-first search. The graph
search technigues have been found to be useful for algorithmic
solutions of a variety of important and interesting graph
theoretic problems. The concept of depth-first search has been
used since the nineteenth century (see [41]). However, it ' was
formalized first by Hopcroft and Tarjan [74] . Breadth-first
search seems to have been used first by Moore [113] . Another way
to search a graph is by breadth-depth search. Breadth-depth search
has been used extensivély in order to develop efficient serial

algorithms for the shortest-path problems and PERT networks.

A search of a graph can be speeded up if more than one arc
are examined at a time. In general, if some or all the steps of a
desired compﬁtation are executed in parallel, greater execution
speed is achieved. Parallel processing, therefore, provides a
natural solution to the probiem of meeting the ever increasing
demand for the computing power of computers. Parallel algorithms
have been studied since early sixties although no parallel
computers had been built at that time. Greater interest in
parallel algorithms has been generated due to the emergence of
highly parallel computer systems like ILLIAC IV[8],

CDC~STAR[69] , STARAN [10] , Cmmp[179] , Cm* [157] etc.

A shared memory model of a Single Instruction-stream
Multiple Data-stream (SIMD) computer is the most widely used model
of parallel computation for theoretical studies (see c.g.,

[4,34, 173, 180]). This model consists of a master processor,

a number of slave processors and an unbounded global memory. All
the slave pfocéssors have substantial local memories and can
access the global memory. The master processor broadcasts instruc=-
tions to the slave processors. An instruction of the master
processor is executed by all the active slave processors simul-
taneously and synchronouslybovér different data. More than one
slave processor are allowed to read from the same location of the
global memory at the same time. Usually no two slave processors
are allowed to write simultaneounsly on the same location of the
global memory. When different processors are allowed to write on

the same location of the global memory, the model is said to

suffer from memory store conflicts.

y
A number of efficient parallel algorithms have been
developed for wide assortments of graph theoretic problems on a
shared memory model of an SIMD computer [4,34,35,57,71,137,144,
180] . The first attempt to design parallel algorithms for
graph search on a shared memory model of an SIMD computer was
made by Reghbati and Corneil[137] , but they remarked that
depth~first secarch.is unsuitable for processing graphs in
parallel, Later, Eckstein [34] proposed parallel algorithms for
depth~first search and breadth-first search of graphs. She also
developed parallel algorithms for some graph connectivity problems
using depth-first scearch and breadth~first search. Eckstein's
study indicated that depth~first search can be used effectively

for processing non~-sparse graphs in parallel.

1.2 MOTIVATION OF THE PRESENT WORK

The present study embodies the results of an investigation
on parallel processing of graphs. The importance of parallel
processing of graphs and the general belief that graph search
methods are unsuitable for parallel processing of graphs are the
two major reasons which have motivated this investigation. The
results obtained are interesting enough to suggest that graph
search can be used effectively for parallel processing of graphs,'

both sparse and non-sparse.

The simplest type of graph is a tree, Trees, besides being
the most important nonlinear structures used in computer algori-
thms, have many other applications (sece [87]). So it is often
required to traverse a tree by visiting i.e., processing its nodes
in some systematic order. The visit at a node may be as simple as
printing its contents or as complicated as computing a function,
There are many ways to travefse a tree. Out of these the preordér,
the postorder and the breadth-first order are frequently used to
traverse a tree, In addition, the reverse postérder is also found

" to be useful. However, when an algorithm for the postorder
traversal is available the reverse postorder traveréal is
accomplished easily effecting only minor modifications of the
postorder tréversal.algorithm. Wyllie[18071 was the first to
suggest parallel -algorithms for traversals of binary trees on a

shared memory model of an SIMD computer.

Directed acyclic graphs belong to a class of graphs that are
more complicated than trees. Directed acyclic graphs are almost
invariably used'to represent precedence relations among individuals
Or objects of a collection., Consequently, directed acyclic graphs
find applications in a wide assortment of probléms. It may be
noted that difected acyclic graphs are far less complicated topo-
logical structures than the general graphs. So it is expeéted
that there are more efficient and simple search algorithms for
directed acyclic graphs than those available for general graphs.
Of course, the best serial algorithms for depth-first search,
breadth-first search and breadth-depth search are optimal

irrespective of the complexity of the graph being searched.

. Graphs arising out of real-life problems often have cycles.
So it is important to evolve search procedures for general graphs.
There are optimal serial algorithms for depth=first search,
breadth-first search and breadth-depth search of graphs.Reghbati
and Corneil [137] proposed parallel algorithms for breadth-first
search and breadth-depth search of graphs. Eckstein [34,35]
developed parallel algorithms for depth-first search and breadth~
first search of graphs. All these parallel search algorithms work

on a shared memory model of an SIMD computer.

An important set of problems dealing with connectivity of
graphs requires finding paths between all pairs of nodes of a
graph (see [2]). A frequently occu:ring path finding problem is’

the shortest-path problem. In the shortest-path problem it is

required to find a path between each pair of nodes of an arc
weighted graph such that the weighted length of this path is less
than or equal to that of any other path between the pailr of nodes.
Dekel, Nassimi and Sahni[24]‘developed efficient parallel algori-
bthms for matrix multiplication on cube-connected and perfect-
shuffle computérs. They showed that by using matrix multiplication
algorithms the minimum of the weighted léngths of all paths
between each pair of nodes can be obtained in 0((log n)?) time
when O(n3) processors are used. However, this method cannot
identify a minimum weighted path i.e., shortest-path between

a pair of nodes.

The cycles of a graph give information as to how well it is
connected. A fundamental set of cycles forms a basis for the
cycle space of a graph. Therefore, the problem of finding a
fundamental set of cycles is an imporﬁant graph connectivity
problem. The removal of a bridge increases the number of
connéctea components of a graph by one., Thus the problem of
locating bridges of a g:aph, is another important graph connec-
tivity problem. There are optimal serial algorithms for the above
mentioned problems (see [138,162]). Savage and Ja' Ja'[144]
proposed efficient parallel algorithms for finding a fundamental
set of cycles and forilocating the bridges of a graph on a shared
memory model of an SIMD computer. Anothe; related graph
connectivity problem is to orient the arcs of a connected,
bridgeless undirected graph so that the resulting directed graph

is strongly'connected. There is a very simple serial algorithm

&

for this problem that uses depth~first search. Atallah [6]and
Vishkin[174]have developed parallel algorithms for orienting
the arcs of a connected, bridgeless undirected graph in oraer to
make 1t strongly connected. These strong orientation algorithms
work on a shared memory model of an SIMD computer. The.model

assumed by Vishkin, allows memory store conflicts.
1.3 AN OVERVIEW OF THE THESIS

The present wofk is centered around designing parallel
algorithms for tree traversals, graph search and graph connecti~-
vity problems on a shared memory model of an SIMD computer.
Parallel algorithms are proposed for the preorder, the postorder,
the reverse postorder and the breadth-first order traversals of
trees. A Parallel algorithm for depth~first search of a directed
acyclic graph is developed using these tree traversal algorithms.
The above mentioned algorithm for depth~first search is asympto-
tically faster than the parallel depth-first search algorithms
proposed earlier by other workers. Parallel algorithms are
developed for breadth-first search and breadth-~depth search of a
general graph. Each cf these scarch algorithms is asymptotically
faster than the corresponding parallel search algoritﬁm proposed -
previously. Parallel algorithms arc proposed for graph
connectfvity problems like identifying a shortest-path between
each pair of nodes of a positively arc weighted graph, finding
a fundamental set of cycles and the bridges of an undirected

graph and strongly orienting a connected, bridgeless undirected

graph. The parallel shortest~path algorithm is more efficient
than those proposed earlier, Similarly, the parallel algorithms
for finding a fundamental.set of cycles and the bridges of an
undirected graph and the parallel algorithms for strongly
orienting a connected, bridgeless undirected graph are more
efficient than the corresponding parallel algorithmé proposed by

other workers, when the underlying graph.is sparse.

This thesis is organized into nine chapters including

the present introductory chapter.

Chapter 2 contains a survey of relevant literature. A
brief review of serial graph algorithms which use one of the
graph seérch techniques viz., depth-first search, breadth-first
search, is given at the beginning. The remaining portion of this
chapter is devoted to a state~of-the~art review of parallel

algorithms.

Chapter 3 presents graph theoretical terminology and
notations used in this thesis. This chapter contains brief
outlines of serial algorithms for important tree traversals and
graph search. Besides these, it contains a discussion on the

model of parallel computation used in this thesis.

Chapter 4 describes parallel algorithms for the preorder,
the postorder, the reverse postorder and the breadth-first order
traversals of trees. These algorithms require a tree to be

available in the form of its binary tree representation., This

chapter, therefore, begins with descriptioﬁ_of a parallel
algorithm that converts a given tree into its binary tree repre-
sentation. The traversal algorithms have O(log n) time complexity
and need O(n1+ﬁ) processors when the given tree has n nodes, |

Il

B Dbeing a preassigned constant satisfying O < g < 1.

Chapter 5 contains an 0((log n)2) parallel algorithms for
depth~-first search of a directed acyclic graph having n nodes

2.81

when O(n /log n) processors are used. This algorithm produces

a depth~first spanning tree of a given directed acyclic graph.

An O(log d. log n) parallel algorithm for breadth-first
search of a graph is presented in Chapter 6 where d is the
diameter of the graph. This algorithm produces n breadth-first
spanning trees of a strongly conﬁected graph or a connected and

undirected graph. The algorithm reqguires O(ns) pProcessors,

Chapter 7 contains an O0((log n)z) parallel algorithm for
breadth-~depth search of a graph. This algorithm produces n
breadth-depth spanning trees of a strongly connected graph or a
connected and undirected graph. The algorithm requires O(n3)

Processors.

2 parallel shortest=path algorithm is proposed in Chapter 8.
~ This algorithm finds a Shortest-path between each pair of nodes
of a graph in 0(log d. log n) time. The algorithm requires

O(n3) pProcessors.

- 10 =

In Chapter 9 parallel algorithms are proposed for finding
a fundamental set of cycles of an undirected graph, for locating
bridges of‘connected and undirected graph and for strongly
orienting a connected, bridgeless undirected graph., Each of these
algorithms runs in 0O((log n)2) time when Of(n. (m~n+1))
processors are used. It is assumed that m denotes the number
of arcs of the graph. It is also indicated that these algorithms
can be improved to run in O(log d. log n) time provided O(na)

processors are emploved,

