Abstract

Some Studies on Designing an Efficient Data flow Computer

Four major sources of inefficiency in data flow computers
have been addressed. These are respectively the problems of
unbounded parallelism, tag-size overhead, data-structure related
overhead and communication cost. The first three have been
resolved by the incorporation of demand driven mode of evaluation
on data flow computer.

An architecture, based on an extension of the Manchester
data flow machine, has been presented. The main feature of this
architecture 1is that it provides a demand driven evaluation
system on a data flow machine for source programs written in the
Functional Programming System, FPS. It has been shown that the
first three sources of i1inefficiency of a data flow computer is
considerably reduced (or even eliminated).

The performance of the proposed architecture has been
studied with simulation experiménts. Stochastic Petri Net models
for the Manchester as well as the proposed architecture have been
given. Experimental results giv&ng performance figures have been
obtained.

The demand dfiven ﬁode of evaluation provides a mechanism
for avoiding recomputation of a function. Convinced about its
role 1in reducing 1inefficiency an attempt to implement this
feature on the existing list-processing-oriented data flow
architecture has been made. Studies have been made on the impact
of this technique in reducing inefficiency.

preblem .
For the 1last, a problem common in almost all kinds of



parallel processing systems, a simple method for
arbitration 1s first given. A new data flow program

partitioning scheme hag been presented.

Keywords and C.R. classifications:

Parallel processors

B.1.2

B.1.3 Data flow architectures

B.4 Modeling Techniques .

c.3.e Applicative languages, Data flow languages
C.3.3.3 Concurrent programming structures

C.4.4 Message sending, network communication
C.4.8 . Modelling and prediction, simulation

D.2 Composite structures

E.2.2 Sequencing and scheduling

E.3.1 Lambda calculus and related systems

E.3.4 Functional constructs, programs and recursion scheme
F.2.2 Graph algorithms

packet

graph



