ABSTRACT

 γ -and β - lactams have attracted organic chemists for their varried biological activities and interesting structural frame works. In this dissertation we have presented the synthesis of novel monocyclic γ – lactam and steroidal β – lactam which are potent antibacterial compounds with unconventional binding modes, producing systems of greater structural diversity. Our synthetic approach involves the intermolecular Michael addition of anilinomalonates to α,β - unsaturated acid chloride followed by intramolecular amidification to generate monogactam (monocyclic γ – lactam) diester. Further to study the antibacterial activity we resolved the monogactam diester to trans fused γ - lactam carboxylic acids. In first two Chapters we have described brief review of β- lactam derivatives as well as γ - lactam compounds and presented the design and synthesis of novel thiopheno γ - lactam derivatives In third chapter antibacterial activities of γ lactam compounds have been evaluated by using Oxford Plaque method It's pesticidal activities also have been measured. In fourth Chapter deals with detailed X-Ray Crystallographic Studies of the synthetic γ – lactam derivatives to reveal some bond rotation and ring disorder phenomena Finally we have concentrated on the synthesis of some other novel γ - lactam and one of the steroidal β -lactam involving (2+2) cycloaddition reaction to appropriate substrate.

Key Words: Novel thieno γ – lactams, Michael addition, Pesticidal activity, Antibacterial activity, X- Ray crystallography, Steroidal β – lactam, (2+2) cycloaddition.