SPECTRAL CHARACTERIZATION OF ALFISOLS AND VERTISOLS BY DIFFUSE REFLECTANCE SPECTROSCOPY

Sarathjith M C

SPECTRAL CHARACTERIZATION OF ALFISOLS AND VERTISOLS BY DIFFUSE REFLECTANCE SPECTROSCOPY

Thesis submitted to the Indian Institute of Technology, Kharagpur For award of the degree

of

Doctor of Philosophy

by

Sarathjith M C

Under the guidance of

Dr. Bhabani S. Das

AGRICULTURAL AND FOOD ENGINEERING DEPARTMENT INDIAN INSTITUTE OF THECNOLOGY KHARAGPUR 2014

© 2014 Sarathjith M C. All rights reserved.

APPROVAL OF THE VIVA-VOCE BOARD

Date:

Certified that the thesis entitled SPECTRAL CHARACTERIZATION OF ALFISOLS AND VERTISOLS BY DIFFUSE REFLECTANCE SPECTROSCOPY submitted by SARATHJITH M C to the Indian Institute of Technology, Kharagpur, for the award of the degree Doctor of Philosophy has been accepted by the external examiners and that the student has successfully defended the thesis in the viva-voce examination held today.

(Member of the DSC)

(Member of the DSC)

(Member of the DSC)

(Supervisor)

(External Examiner)

(Chairman)

CERTIFICATE

This is to certify that the thesis entitled **Spectral Characterization of Alfisols and Vertisols by Diffuse Reflectance Spectroscopy**, submitted by **Sarathjith M C** to Indian Institute of Technology, Kharagpur, is a record of *bona fide* research work under my supervision and I consider it worthy of consideration for the award of the degree of Doctor of Philosophy of the Institute.

Supervisor

Date:

DECLARATION

I certify that

- a. The work contained in the thesis is original and has been done by myself under the general supervision of my supervisor.
- b. The work has not been submitted to any other Institute for any degree or diploma.
- c. I have followed the guidelines provided by the Institute in writing the thesis.
- d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute.
- e. Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references.
- f. Whenever I have quoted written materials from other sources, I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references.

Signature of the Student

CURRICULUM VITAE

Sarathjith M C

Home Address	: Chittakalam, Korenchira, Palakkad, Kerala, India. 678 684
Gender	: Male
Date of Birth	: 29 June 1986
e-mail	: <u>sarathjith.mc@gmail.com</u> , <u>sarathjithmc@agfe.iitkgp.ernet.in</u>
Contact Number	: +91 8900266894

Education

- M.Tech [2011, CGPA: 9.6/10] Agricultural Systems and Management Indian Institute of Technology Kharagpur, West Bengal, India Thesis title: Spectral Characterization of Red and Black Soils of Karnataka
- B.Tech [2009, OGPA: 8.2/10] Agricultural Engineering Kerala Agricultural University, Vellanikkara, Kerala, India Thesis Title: Development of GMP and HACCP Protocol for Pepper Industry

Academic Highlights

- Institute Research Assistantship (IIT Kharagpur), for M.Tech and PhD program since July 2009.
- Institute Silver Medalist (2010–2011) for being the best student in order of merit among the graduating M.Tech students of the Department of Agricultural and Food Engineering, IIT Kharagpur

Publications

- M. C. Sarathjith, B. S. Das, H. B. Vasava, B. Mohanty, S. S. Anand, S. P. Wani, K. L. Sahrawat. 2013. Diffuse Reflectance Spectroscopic Approach for the Characterization of Soil Aggregate Size Distribution. Soil Science Society of America Journal, 78:369–376 doi:10.2136/sssaj2013.08.0377.
- M. C. Sarathjith, B. S. Das, S. P. Wani, and K. L. Sahrawat. 2014. Dependency Measures for Assessing the Co-variation of Spectrally-Active and Spectrally-Inactive Soil Properties in Diffuse Reflectance Spectroscopy, Soil Sci. Soc. Am. J. (*In review*).

ACKNOWLEDGMENTS

With immense pleasure, I express my sincere gratitude to my research supervisor, Dr. Bhabani S. Das, Associate Professor, Agricultural and Food Engineering Department, IIT Kharagpur, for his scholastic guidance, constructive criticisms, valuable suggestions and motivation since the very early stage of my research. His constant encouragement and support inspired and enriched me as a student and as a researcher.

I am grateful to Prof. Pratap B. S. Bhadoria, the Head of Agricultural and Food Engineering Department, IIT Kharagpur, for his support and for providing necessary facilities for my doctoral programme. I am indebted to all the members of my Doctoral Scrutiny Committee, Prof. R. Singh and Dr. Mihir K. Dash for their valuable criticism, suggestions and encouragement during my research. I acknowledge the Ministry of Human Resource Development, Government of India for providing me financial assistance for my research.

I am sincerely thankful to Dr. Suhas P. Wani and Dr. Kanwar L. Sahrawat, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad in providing soil samples with wet analysis data which built a strong foundation for my research. In addition, their constant support and encouragement throughout my research needs a special mention.

Words do not suffice to express my gratitude to my friends in Soil Physics Laboratory, Ms. Pragna Dasgupta, Mr. Anand S.S, Mr. Hitesh B. Vasava, Ms. Biswajita Mohanty, Mr. Niranjan Panigrahi, Ms. Poulamee Chakraborty for their constant motivation, cooperation and help throughout the study. I fail on my part if I do not mention Mr. Biplab Datta for his whole-hearted help in soil sieving and reflectance spectra acquisition for almost all soils involved in this research work. I thank all my friends at IIT Kharagpur for their encouragement and moral support during my research.

Words cannot express how grateful I am to my parents, sister Mrs. Ramyatha M.C and her husband Mr. Sandeep, brother-in law Mr. Prince K. Babu and his family for their love, encouragement, and moral support during my study. I would like to appreciate my beloved friend and wife Mrs. Pritty S. Babu who made sacrifices on my behalf, spent sleepless nights while thesis writing, and in giving me moral support throughout the research. Without prayers from each member of my family I could not have completed this work successfully.

Above all, I humbly thank the supreme power for all the grace and blessings that has been bestowed upon me during this research.

Signature

CONTENTS

Title Page		i
Approval of	of the Viva-Voce Board	ii
Certificate		iii
Declaration	n	iv
Curriculun	n Vita	V
Acknowled	dgments	vi
Contents		vii
List of Tab	bles	Х
List of Fig	ures	xi
List of Abl	breviations	xii
List of Syn	nbols	xvi
Abstract		xviii
Chapter 1	Introduction	1
Chapter 2	Literature Review	9
	2.1 Fundamentals of infrared reflectance spectroscopy	9
	2.2 Operational wavelengths for soil spectroscopic studies	10
	2.3 Spectral features of soil	12
	2.4 Factors influencing soil reflectance	13
	2.4.1 Moisture content	14
	2.4.2 Organic matter	15
	2.4.3 Clay minerals	17
	2.4.4 Iron oxides	18
	2.4.5 Particle size	18
	2.5 Data modeling scheme	20
	2.5.1 Data pre-processing	20
	2.5.2 Data subsetting	22
	2.5.3 Data modelling algorithms	24

	2.5.4 Model evaluation	27
	2.5.5 Feature identification	30
	2.6 Need for soil spectral library	31
	2.7 Spectroscopy in low carbon soils	34
	2.8 Spectroscopic studies in India	35
	2.9 Soil attributes predicted using diffuse reflectance spectroscopy	38
	2.10 Prediction of non chromophores	39
Chapter 3	Materials and Methods	42
	3.1 Soil Data	42
	3.1.1 Study area and soil sampling	42
	3.1.2 Measurement of soil properties	43
	3.1.2.1 Basic soil properties and nutrient contents	43
	3.1.2.2 Aggregate size distribution characteristics	44
	3.1.3 Measurement of soil spectral reflectance	46
	3.2 Data analysis	47
	3.2.1 Descriptive statistics of soil properties	47
	3.2.2 Development of chemometric model for estimating soil	48
	properties	
	3.2.2.1 Data preprocessing	49
	3.2.2.2 Outlier detection	50
	3.2.2.3 Data partitioning	51
	3.2.2.4 Regression modeling	51
	3.2.2.5 Model accuracy estimation	53
	3.2.2.6 Co-variation assessment using dependency measures	53
Chapter 4	Results and Discussions	56
	4.1 Exploratory analysis of soil properties	56
	4.1.1 Basic soil properties	56
	4.1.2 Nutrient contents	58
	4.1.3 Aggregate size distribution parameters	58

4.1.4 Correlation structure	64
4.2 Spectral characteristics of Vertisols and Alfisols	67
4.3 Development of spectral algorithms	68
4.3.1 Preprocessing of spectral reflectance data and feature selection	68
4.3.2 Development of spectral algorithms	69
4.3.2.1 Prediction of soil chromophores	74
4.3.2.2 Prediction of soil non-chromophores	80
4.3.2.3 Estimation of soil aggregate size distribution parameters	86
4.4 Assessment of dependency measures for estimating non-	91
chromophores	
4.4.1 Prediction of soil properties using the DRS approach	91
4.4.2 Assessment of co-variation criteria	97
Chapter 5 Summary and Conclusions	103
References	107
Appendix A	
Appendix B	

LIST OF TABLES

Table 2.1	Absorption Features Associated with Organic Matter	16	
Table 2.2	Absorption Features Associated with Clay Minerals		
Table 2.3	Absorption Features Associated with Iron Oxides		
Table 2.4	Criteria to Examine the Model Performance in Soil Spectroscopic	29	
	Literature		
Table 2.5	Soil Spectral Libraries Across the World (compiled from Stevens et	34	
	al., 2013)		
Table 2.6	Regression Statistics of Prediction for Selected Soil Properties using	40	
	Diffuse Reflectance Spectroscopy		
Table 3.1	Contrasting Characteristics of Vertisols and Alfisols (compiled from	43	
	Lotse et al., 1972)		
Table 3.2	Specifications of FieldSpec® 3 Portable Spectroradiometer	47	
Table 4.1	Descriptive Statistics of Soil Properties	60	
Table 4.2	Pearson Correlation Coefficients between Soil Properties in	66	
	Vertisols		
Table 4.3	Pearson Correlation Coefficients between Soil Properties in Alfisols	67	
Table 4.4	Regression Statistics for the Prediction of Soil Chromophores	76	
Table 4.5	Assignment of Functional Groups for Soil Chromophores for Most	82	
	Relevant Wavelengths		
Table 4.6	Regression Statistics for the Prediction of Soil Non-Chromophores	85	
Table 4.7	Regression Statistics for the Prediction of Soil Non-Chromophores	88	
	Reported in Literature		
Table 4.8	Regression Statistics for the Prediction of Aggregate Size	90	
	Distribution (ASD) Characteristics		
Table 4.9	Functional Group Assignment for Aggregate Size Distribution	94	
	Characteristics		
Table 4.10	Regression Statistics for the Prediction of Soil Properties	96	
Table 4.11	Co-Variation between Non-Chromophores and Chromophores	102	

LIST OF FIGURES

Fig. 3.1	Soil Sampling Locations	44
Fig. 3.2	Chemometric Model Development Scheme	49
Fig. 4.1	Histograms and Box Plots for all Chromophores in Vertisols after	61
	Normality Transformation	
Fig. 4.2	Histograms and Box Plots for all Non-Chromophores in Vertisols	62
	after Normality Transformation	
Fig. 4.3	Histograms and Box Plots for all Chromophores in Alfisols after	63
	Normality Transformation	
Fig. 4.4	Histograms and Box Plots for all Non-Chromophores in Alfisols after	64
	Normality Transformation	
Fig. 4.5	Average Spectral Reflectance of Vertisols and Alfisols	68
Fig. 4.6	Pre-processing of Reflectance Spectra of Vertisols and Alfisols	71
	Using Different Transformation Schemes. ABS: absorbance, KM:	
	Kubelka-Munk, SNV: standard normal variate, FD: first derivative,	
	SD: second derivative	
Fig. 4.7	Multiresolution Analysis (MRA) Using Haar Wavelet in Vertisols	72
	and Alfisols	
Fig. 4.8	Residual Case Order Plot for Outlier Detection in Organic Carbon of	73
	Vertisols	
Fig. 4.9	Selection of Optimum Number of Latent Variables in Vertisols and	74
	Alfisols	
Fig. 4.10	Akaike Information Criteria (AIC) for the Selection of Appropriate	75
	Spectral Transformation Approach in Vertisols and Alfisols	
Fig. 4.11	Plots of the Observed versus Predicted Values of Soil Chromophores	77
	in Vertisols and Alfisols	
Fig. 4.12	Significant Wavelengths for the Prediction of Chromophores in	80
	Vertisols and Alfisols	
Fig. 4.13	Plots of the Observed versus Predicted Values of Non-Chromophores	86

in Vertisols and Alfisols

- Fig. 4.14 Mean Reflectance in each Quartile of the Geometric Mean Diameter 89 (GMD)
- Fig. 4.15 Plots of the Observed versus Predicted Values of Aggregate Size 91 Distribution Parameters: Geometric Mean Diameter (GMD), Mean Weight Diameter (MWD) and the Median and Standard Deviation of the Lognormal Aggregate Size Distribution Function (d_m and σ , respectively). White and Black Filled Circles Represent the Calibration and Validation Data Sets, respectively
- Fig. 4.16 Significant Wavelengths for Prediction of Aggregate Size 93 Distribution Characteristics Geometric Mean Diameter (GMD), Mean Weight Diameter (MWD) and the Median and Standard Deviation of the Lognormal Aggregate Size Distribution Function $(d_m \text{ and } \sigma, \text{ respectively})$
- Fig. 4.17 Plots of the Observed versus Predicted Values of Soil Properties in 97
 Vertisols and Alfisols; ln: Natural Logarithm Transformation, λ: Box-Cox Parameter, UT: Untransformed (properties not conformed to normality)
- Fig. 4.18 Linkage Between Average Dependency Index (ADI) and the 103 Residual Prediction Deviation (RPD) of Non-Chromophores

ABBREVIATIONS

ABS	Absorbance
ADI	Average Dependency Index
AIC	Akaike Information Criterion
AMI	Adjacency Values of Mutual Information
ANN	Artificial Neural Networks
ASD	Aggregate Size Distribution
bicor	Biweight Midcorrelation
CEC	Cation Exchange Capacity
CR	Continuum Removal
СТ	Committee Trees
CV	Coefficient of Variation
DRS	Diffuse Reflectance Spectroscopy
DT	Detrending
DTPA	Diethylene Triamine Penta-Acetic Acid
DWT	Discrete Wavelet Transform
EC	Electrical Conductivity
EMR	Electromagnetic Radiation
ET	Electronic Transitions
FD	First Derivative
GMD	Geometric Mean Diameter
ICP-OES	Inductively Coupled Plasma Optical Emission Spectrometry
ICRAF	International Centre For Research In Agroforestry
ICRISAT	International Crops Research Institute For Semi-Arid Tropics
IR	Infrared
ISRIC	International Soil Reference And Information Centre
IUSS	International Union Of Soil Sciences
KM	Kubelka-Munk
KS	Kolmogorov-Smirnov

LOOCV	Leave-One-Out Cross Validation
LUCAS	Land Use/Cover Area Frame Statistical Survey
MARS	Multivariate Adaptive Regression Splines
MATLAB	Matrix Laboratory
max	Maximum
MaxN	Maximum Normalization
MC	Mean Centering
MeanN	Mean Normalization
MI	Mutual Information
min	Minimum
MIR	Mid-Infrared
MLR	Multiple Linear Regression
MRA	Multi Resolution Analysis
MSC	Multiplicative Scatter Correction
MSE	Mean-Squared-Error
MWD	Mean Weight Diameter
NER	Noise Equivalent Radiance
NIR	Near–Infrared
OC	Organic Carbon
OM	Organic Matter
PCR	Principal Component Regression
PLSR	Partial Least Square Regression
PTF	Pedotransfer Functions
R	Reflectance
RCO	Residual Case Order
RER	Ratio Error Range
RMSE	Root Mean Squared Error
RPD	Residual Prediction Deviation
RPIQ	Ratio of Performance to Inter-Quartile Distance
RT	Regression Tree

SD	Second Derivative
SEC	Standard Error of Calibration
SEP	Standard Error of Prediction
SG	Savitzky–Golay Smoothing
SMLR	Stepwise Multiple Linear Regression
SNV	Standard Normal Variate
SS	Smooth Spline
STF	Spectrotransfer Functions
SWIR	Shortwave–Infrared
TE	Thermoelectric
U.S.	United States
UT	Untransformed
UV	Ultraviolet
VIP	Variable Importance for Projection
VIS	Visible
VN	Vector Normalization
VNIR	Visible-Near-Infrared

SYMBOLS

\overline{X}	:	Mean of variable <i>X</i>
\overline{Y}	:	Mean of variable <i>Y</i>
\widehat{Y}	:	Predicted soil property
\overline{Y}	:	Mean of observed soil property
W_{jk}^2	:	Loading weight of the k^{th} variable in the j^{th} PLSR factor
ŷ	:	Box-Cox power transformed soil property
μ_R	:	Mean of reflectance
а	:	Scattering coefficient/ Number of factors
b	:	Offset
d	:	Aggregate diameter (mm)
$d_{ m m}$:	Mean aggregate diameter
е	:	Soil constituent information
erfc	:	Complementary error function
f	:	Frequency distribution
H(X)	:	Marginal entropy of <i>X</i>
H(X,Y)	:	Joint entropy of X and Y
H(Y)	:	Marginal entropy of <i>Y</i>
Ι	:	Indicator
Κ	:	Total number of predictor variables
ln	:	Natural logarithm
LV	:	Number of latent variables
n	:	Number of observations or soil samples
р	:	Level of significance
p(x)	:	Probability mass function of X
p(x,y)	:	Joint probability distribution of X and Y
<i>p</i> (<i>y</i>)	:	Probability mass function of <i>Y</i>
Q_1	:	First quartile of soil property

Q_3	:	Third quartile of soil property
R	:	Reflectance spectrum
r	:	Pearson correlation coefficient
R^2	:	Coefficient of determination
R_{ref}	:	Reference spectrum
SSY_j	:	Explained sum of squares of soil property
SSY_t	:	Total sum of squares of soil property
<i>u</i> _i	:	Normalized variable of X
Vi	:	Normalized variable of Y
W	:	Cumulative aggregate mass fraction
Wi	:	Mass fraction of soil aggregates (g)
w_i^X	:	Weight for <i>X</i>
w_i^Y	:	Weight for <i>Y</i>
X	:	A variable
X_m	:	Median of <i>X</i>
X_{mad}	:	Median absolute deviation of <i>X</i>
Y	:	Observed soil property
У	:	Soil property
Y	:	A variable
Y_i	:	Observed response variable
Y_m	:	Median of <i>Y</i>
Y_{mad}	:	Median absolute deviation of <i>Y</i>
β	:	Regression coefficient
δ	:	Bending mode
λ	:	Wavelength/ Box-Cox parameter
v	:	Overtone
σ	:	Standard deviation of aggregate size distribution function
σ_R	:	Standard deviation of reflectance

ABSTRACT

Rapid assessment of soil characteristics is pre-requisite for the management of agricultural resources. Over the last two decades, diffuse reflectance spectroscopy (DRS) is emerging as a promising technology for the rapid assessment of several soil properties. A prerequisite in the DRS approach is the availability of robust relationships between soil properties and corresponding reflectance spectra. Generally, large databases on soil properties and soil reflectance spectra are required to develop such spectral algorithms. Review of the DRS studies revealed that only a limited effort has been made to apply the DRS approach to Indian soils and the performance of the DRS approach is often not satisfactory especially in low carbon soils. In this study, spectral algorithms were developed for estimating both chromophores (organic carbon; texture; iron content; aggregate size distribution, ASD characteristics) and non-chromophores (pH, electrical conductivity, phosphorus, potassium, sulfur, boron, zinc, aluminum) in two major soil orders Alfisols and Vertisols of Karnataka state in India. Partial least squares regression models were used to develop spectral algorithms. Model accuracy was evaluated using residual prediction deviation (RPD). The DRS approach yielded mixed results in predicting basic soil properties and nutrient contents. The first derivative-based DRS models yielded accurate prediction of most of ASD characteristics in both the soil types. The co-variation assumption was also evaluated using three dependency measures (Pearson correlation coefficient, r; biweight midcorrelation, *bicor*; and adjacency values of mutual information, AMI) by generating an average dependency index (ADI) for each of the three measures (ADIr, ADIbicor and ADIAMI). The relationships between RPD values of non-chromophores and the ADI values were ascertained for different chromophore groups (physical, chemical and combined). The ADI_{AMI} outperformed ADI_r and ADI_{bicor}. The ADI_{AMI} computed using chemical chromophores showed strong linear relationships $(R^2 = 0.93)$ between ADI_{AMI} and RPD of chemical non-chromophores suggesting that the AMI may be used as a robust dependency measure to assess the co-variation of nonchromophores with chromophores. The study demonstrated the use of DRS approach in the characterization of low carbon soils, prediction of ASD characteristics and a MI based dependency measure for 'co-variation' assessment.

Keywords: diffuse reflectance spectroscopy, aggregate size distribution, chromophores, non-chromophores, organic carbon, partial least squares regression, residual prediction deviation, Pearson correlation coefficient, biweight midcorrelation, mutual information.