CHAPTER I

INTRODUCTION




Flows of real fluid occuﬁ}ng in nature are gene-
rally turbulent in view of the large scale of the motion.
It is found that the laminar motion occurs at such a low
Reynolds number that any deviations from it are damped out
by viscosity. At sufficiehtly large Reynolds numbers the
fluid motion becomes unstable, This implies the inability
of the basic flow to sustain against perturbations to
which the flow is subjected. If, on the other hand, the
"perturbations decay with time and the flow reverts to the

original state, the flow is said to be stable,

There are essentially two distinct methods for
studying the stability of flows. In the first method,
the disturbances superimposed on the basic flow are assumed
to be infinitesimal. This enables one to linearize the re-
levant equations and study them by the technique of normal
mode. A comprehensive account of this technique has been
given in the monograph by Chandrasekhar / 1 /. The second
approach is based on the energy method due to Serrin [_2;7.
In this method, the time rate of change of the total kinetic
energy of the disturbance superimposed on the basic flow is
studied, the amplitude of the disturbance being assumed
finite. If the total kinetic énergy decreases with time,
we say that the flow is stable. Utilizing this method one

may obtain a universal stability estimate which provides



sufficient condition for asymptotic stability in the mean.
The linear stability theory gives an upper bound to
stability such that when the bound is exceeded the flow

is definitely unstable. On the other hand the energy
method delineates the zone of definite stability with res-
pect to finite amplitude disturbances. This zone may be

further extended by a variational method as discussed by

Joseph / 3_/.

In the linearized theory it is possible to assume,
the time dependency part of the disturbance in the expo-
nential form i.e., in the form of éﬁﬁdl , Where the
frequency Co is complex, If the imeginary part of o
is positive, the disturbance will increase with time. But
actually this is not the case. As 1t amplifies it must
eventually reach a size such that the mean transport of
momentum by the finite fluctuations is appreciable, and
such that the associated mean stress known as Reynolds
stress has an appreciable effect on mean flow. Due to the
appreciable effect of the Reynolds stress, the mean flow
gets distorted., This distortion of the mean flow modifies
the rate of transfer of energy from the mean flow to the
disturbance and since this energy is the cause of the growth
of the disturbance there is a modification of the growth of
the latter (Stuart / 4_/). It is found that, in many cases,

an equilibrium state may be possible in which the rate of

transfer of energy from the (distorted) mean flow to the



i~

disturbance balances precisely the rate of viscous dissi-
pation of the energy of disturbance. The equilibrium flow
may exist in supercritical conditions if this Reynolds
number R is above the critical value Rc corres-
ponding to linearized theory. On the other hand suberitical
instability may occur in a flow if this flow is unstable
with respect to finite amplitude disturbances before it
becomes unstable with respect to infinitesimal distur-
bances. It should be noted that if equilibrium flow is
established, it does not mean that it is a stable flow at
all Reynolds numbers above the critical value which is
given by linearized theory. Further the equilibrium flow

must become unstable in some way before the flow becomes

turbulent.

T,et us now examine the nature of the flow resulting
from the absolute instability of the basic steady flow at
large Reynolds numbers. We examine in particular what
happens when the Reynolds number R exceeds Rc (the
critical Reynolds number according to linearigzed theory)
slightly. When the time dependence in the linear theory
is of the form éluj{ with W= w,+ 17, ,
it follows that when R<R®: , 1, 1is negative.
when R = Rc¢ , there is one frequency whose imaginary

part is zero. While if R exceeds R, slightly, A,

is positive bﬁt is much smaller than ¢3, . 1In this case



it is possible to assume the perturbed quantities in the
form ACE). 3(6(9 40 2) , where §  is some
complex function of co-ordinates, and the complex ampli-

tude is

o k]
Al) = Censt.c . e . (1)

The equation (1) will be valid only when R is slightly
greater than (. 1i.e. only for a short interval after

the break down of the steady flow.

Let us now calculate the modulus |A | of the
amplitude of the disturbance when [ exceeds F?C sli-
ehtly. For small values of + during which (1) is valid
we may write cLlAiz/A{ = 29, |A\7‘ , which is
just equal to the first term of the expansion of

A \/\\2 /(‘U: in a series of powers of A  and A*
(complex eonjugate of A ). As the modulus of the amp-
litude | Al increases (still remaining small), the
subsequent terms in this expansion should be taken into
account. The next terms in the expansion for d.lA\l /OHZ
would be third order in A . However we are not inter-
ested in the exact value of @L[A\l /d+ but only
on its time average. This average is to be taken over a
time large compared with the period 217 //QJ ' of the
disturbance, Since Gy >> 'Y’, , this period is much

smaller than /¥, , which is a measure of the time



