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ABSTRACT

Numerical methods have been developed for solving 

various flow problems about bodies of arbitrary shape. These 

methods are based on the distribution of singularities interior 

t© the body surface while the boundary condition is satisfied 

on the surface of the body. In most practical problems these 

methods appear to be more economical than the commonly used 

surface distribution technique. The particular problems con

sidered in this thesis are

(i) incompressible potential flow about various two- 

dimensional bodies of arbitrary shape,

(ii) incompressible potential flow about three- 

dimensional non-lifting wings having sharp leading 

edges,

( H i )  inviscid compressible flow about two-dimensional 

aerofoils,

(iv) compressible flow about two-dimensional aerofoils 

taking boundary layer effects into account,

(v) incompressible potential flow about oscillating 

aerofoils•

Computer programs have been developed in FORTRAN IV 

language for the above cases. To check the accuracy of the 

numerical methods developed in this thesis, computer programs 

based on the standard Hess and Smith approach have also been
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developed for all these eases. The numerical results obtained 

by the present approach compare well with those of Hess and 

Smith method. One definite advantage of the present approach 

is that for same numerical accuracy the methods are conside

rably faster than the Hess and Smith method. Thus the 

numerical methods based on internal singularity distribution 

technique are most suitable for calculating flows about bodies 

of arbitrary shape.
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	Pressure distribution on 17. 8 7. cambered Karman Trefftz aerofoil ah 10° incidence

	Fig.9 Mathematical model adopted in the internal singularity method for flow past a ellipse

	Mathematical model adopted in the internal singularity method for aerofoils with sharp leading edges

	.20 Mathematical model for the wing with one symmetry plane

	-ig. 35 Mathematical model to include boundary layer effects in Hess and Smith method.

	Fig.36 Mofhemohical model to include boundary layer effect's in the present mefhod.

	Fig-51 De vooren-vel aerofoil oscillating about mid chord position


	Fig.54 8-4% von mises aerofoil oscillal-ing about- quO-rfer chord








