Abstract

The present thesis embodies the applications of Cellular Automata (CA) for designing
reliable and testable VLSI circuits. The homogeneous structure of CA and its different
phases of development are briefly reviewed. The theory of generating Error Correcting
Code (ECC) with the help of CA has been investigated. Different encoding and decoding
schemes for detecting/correcting random bit errors and byte errors have also been pro-
posed. In both the cases it is shown that the hardware implementation of the decoding
schemes are simple as well as cost effective. Further, an elegant scheme is derived for de-
signing Single-Error-Correcting, Double-Error-Detecting and All-Unidirectional-Error-
Detecting (SEC-DED-AUED) codes using a special class of non-group CA. Employing
the inherent properties of the same non-group CA, a novel scheme for synthesizing easily
testable finite state machines (FSM’s) is presented. A BIST structure is'proposed for
testing memory array, where the CA is mainly used as a pattern generator for testing
Pattern Sensitive Faults (PSF’s). Two-dimensional (2-D) CA have been characterized
based on the elegant matrix algebraic characterization of 1-D CA. This 2-D CA is used
as a pseudo-random pattern generator. Better randomness of the patterns generated by
2-D CA over that of 1-D CA and LFSR has been established. Exploiting this better

randomness property of 2-D CA, the design of pseudo content addressable memory has
been proposed.
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