
INTRODUCTION AND SUMMARY

Investigation of the behaviour of nonlinear systems is 
a very interesting and important field of study, mainly 
because of the following reasons. Firstly, almost all physical 
systems possess nonlinearities and hence a study of the behaviour 
of such systems becomes imperative for a meaningful probe into 
the behaviour of most of the systems that we come across. 
Secondly, a very large array of interesting phenomena like 
limit cycles, jump resonance, subharmonic oscillations and 
asynchronous excitation etc., are exhibited by nonlinear 
systems. Lastly/one has the challenge of some very formidable 
problems associated with the analysis of such systems. These 
problems occur both at the conceptual and analytical level on 
the one hand, and at the level of the involved computational 
complexity on the other.

Ascertaining stability, investigating the limit cycle 
behaviour, analysis of forced harmonic response including 
multimodal behaviour and jump resonance [l7,24], forced 
subharmonic oscillations [71,74], quenching of limit cycles by 
high frequency inputs —  deterministic and nondeterministic 
[11,21,46,48,49,50,64,66 ], asynchronous excitation [38,64] and 
investigation of the stability of forced oscillations [7 2] 
constitute problems of major interest in the analysis of 
nonlinear systems.

The Direct method of Liapunov [20], the Popov criterion 
[16,27/41,42,51 ] and other techniques making use of functional
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analysis [2,7/33,59 ] have been developed for investigating 
the absolute stability, and tne stability in the small of 
systems incorporating one or more nonlinear elements.

Even for systems incorporating a single nonlinear 
element, except in a few cases, exact analytical solutions are 
not possible. Consequently recourse has to be made to techniques 
that yield approximations to the system behaviour. A number of 
techniques, like phase plane analysis, the method of iteration, 
the method of perturbation, the averaging methods, the method 
of harmonic balance, the describing function (DF) method and 
the dual input describing functions (DIDF) have been developed 
[3, 19] to aid the analysis of nonlinear systems. However, 
while the application, of the approximate methods results in a 
marked reduction in the complexity of analysis for systems 
incorporating only one nonlinear element, the complexity for 
two and higher dimensional systems remains formidable even 
when these approximation techniques are employed.

The importance v*f system structure in the development 
and selection of the technique most suited to the analysis of 
a particular problem has been implicitely recognized in 
literature concerned with two and higher dimensional nonlinear 
systems. For example, Gelb [l8] has investigated oscillatory 
behaviour of systems incorporating two or more nonlinear 
elements in a single loop. In these cases the assumed symmetry 
of the system has been exploited for reducing it to an 
equivalent system incorporating only one nonlinear element.
Jud [28], Gran and Rimer [2 2], Davison and Constantinescu [l5]
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have considered another structure incorporating a number of 
nonlinear elements each with associated linear elements in 
tandem, forming a number of parallel paths having a common 
feedback. Although systems having more general configurations 
have also been analysed [34,44,69], no systematic investigation 
of the various possible system configurations for nonlinear 
multivariable systems seems to have been made.

The literature pertaining to systems incorporating a 
single nonlinear element is well documented in a number of 
text books [3,9,20,39], review papers [4,5] and doctoral 
dissertations [64]. This brief review, therefore, confines 
attention to literature pertaining to systems incorporating 
two or more nonlinear elements.

Lindgren and Pinkos [32] have investigated the stability 
of symmetrical two dimensional nonlinear control systems by 
using Liapunov functions. However, in this analysis also 
symmetry considerations permit the problem to be effectively 
reduced to a single dimensional problem thus reducing the 
complexity of analysis.

The frequency domain stability criterion of Jury and 
Lae [29] that extends the absolute stability analysis of 
Popov to nonlinear multivariable systems has also been obtained 
by McGee [3 6] by establishing a condition for the existence 
of a Lure type Liapunov function. Moore and Anderson [.42] have 
extended circle criterion to multivariable systems incorporating 
a finite number of time varying feedback elements. Huseyin [26]
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has extended this work to systems incorporating many nonlinear 
time varying feedback elements.

Byrne [1 2 ] has proposed a method for determining 
absolute stability for 2-channel symmetric nonlinear systems 
where the nonlinearities are restricted in sectors as well as 
in slopes.

A number of investigators [16,25/27/32/41/42,51] have 
contributed to the generalization of the Popov criterion to 
nonlinear multivariable systems.

McClamroch [34] considered a general state variable 
representation of a nonlinear multivariable system and obtained 
inequalities defining the sectors permissible for the non­
linear characteristics for ensuring zero input stability of 
the system.

Shankar [61] used Greshgorin's theorem on the bounds of 
eigenvalues to establish sufficient conditions for all the 
eigenvalues of a matrix P [ p = A(jw ) + A*(jw), where 
A(jto) = (I + j wQ) G(jw) + K  ̂] , to be positive for ensuring 
the positive definiteness of P. However, these procedures 
suffer from the trial and error involved in finding the best 
values of q ^  which determine the slopes of the Popov lines 
as well as radii of the banding circles.

Rosenbrock [58] and Cook j[l3] have derived results that 
are valid for nonlinearities confined to sectors. Both these 
results require that for stability the m-banded frequency

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r



response loci of the diagonal elements G^(ju>) satisfy the 
single variable circle criterion with respect to circles with 
real axis diameter that are dependent on the sector bounds of 
the nonlinearities.

Rao and Baliga [56] and McClamroch and Lanculescu [3 5] 
have considered a specific type of interconnection of two 
nonlinear subsystems and developed a stability condition which 
depend explicitely on the properties of the subsystems and the 
interconnection parameters. The stability condition in the form 
of inequality expressions is a function of the product of 
interconnection coefficients related to the sector bounds of 
the nonlinearities.

Blight and McClamroch [lo] have considered a certain 
class of multiloop systems and established a stability criterion 
which involves the individual Nyquist plots of the linear 
scalar subsystems and a certain positivity condition pertaining 
to the nonlinear subsystems. The derivation makes use of the 
functional analysis approach and depends on the hyper 
stability concept introduced by Popov [52].

Several other papers [2,7/33,59] have also investigated 
the absolute stability of nonlinear multivariable systems 
making use of functional analysis.

Gelb [18] and Lindgren [3l] have investigated limit 
cycles in symmetric nonlinear systems by reducing the problem 
to an equivalent single loop system and basing the analysis on 
the describing function (DF) for the nonlinear elements.
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Jud [28] has described a technique for investigating the 
limit cycle conditions for a general system configuration 
incorporating any number of parallel forward paths, each of 
which contains linear and nonlinear elements. The analysis 
employs the DF loop gain technique described by Schiring [60] 
wherein the input to each nonlinear element must be expressed 
in terms of the input to any one of the nonlinear elements.
Thus, the loop gain equation formed in the frequency domain 
effectively involves two unknowns, namely 00 and the amplitude 
of the input to the nonlinear element , which can be determined 
from the two equations obtained by separating the real and 
imaginary parts. A graphical solution is normally resorted to 
but the procedure becomes very cumbersome for systems incor­
porating a number of nonlinear elements.

Viswanadham and Deekshatulu [69] have analysed the self­
oscillations in a two variable system by employing the DF 
approach in conjunction with the D-partition technique [62].
However the method is confined to only those nonlinearities 
whose DF expressions are explicit functions of input .

Barron [8] has developed a digital computer algorithm, 
the Harmonic 3alance Algorithm (HBA), for analysing limit 
cycles in autonomous nonlinear mutlivariable systems. This 
algorithm makes use of the DF approach and accounts for the 
influence of several harmonic components.

Nugent and Kavanagh 4̂5j and Rasis and Bonen [57] have 
analysed the self-oscillation in a nonlinear multivariable system 
incorporating a two dimensional relay characteristics by employing
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extensions of the Tsypkin approach [25]. Negescu and 
Sebastian [43] have developed a grapho-analytical method for 
determination of self-oscillation in systems_incorpora.ti.ngvtwo 
nonlinear memoryless, energyless elements separated by a linear 
device.

Using the DF approach Woon has developed a flexible 
criterion for the absence of limit cycles which appears to be 
less conservative in comparison with other criteria [73].

For two dimensional systems with uncoupled nonlinearities 
Ramani [3] showed that sufficient conditions for the non­
existence of a limit cycle could be checked from plots of the 
DF loci for the two nonlinearities and the frequency response 
loci G^Cjw), G^Cjoi)) and the characteristic loci, Mjw), of 
G(s). When these conditions are not satisfied, the parameters 
of a possible limit cycle can be evaluated from a complex 
equation developed from closed loop considerations by selecting 
a suitable complex constant.

Various theorems of matrix algebra have also been made 
use of for establishing sufficient conditions for the non­
existence of limit cycle [37,55]. However these conditions 
ignore the relationships between the frequency and amplitude 
of the inputs to the nonlinearities that would exist for a limit 
cycle and these are often conservative [5].

Gray and Nakhla [23] analyse the limit cycles in 
multivariable nonlinear systems, by solving Harmonic Balance 
equations which consider the fundamental along with other
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superharmonic components by employing an iterative procedure. 
They have laid considerable emphasis on the computational 
aspects and also give a graphical interpretation in the 
frequency domain.

Kazakov L3 0] has employed a statistical linearization 
technique to analyse nonlinear multivariable control systems 
subjected to random disturbances.

Nikiforuk and Wintonyk [44] have investigated the 
response of two dimensional nonlinear systems subjected to 
sinusoidal inputs by employing a DF approach that involves 
a considerable amount of graphical manipulation .

Viswanadham et al [7 0 ] have given attention to the 
problem of design of symmetrical two dimensional nonlinear 
maltivariable systems subjected to step inputs.

The present work is mainly concerned with the analysis 
of two dimensional nonlinear multivariable systems.

Two dimensional nonlinear multivariable systems 
constitute a very important class of systems. In many 
practical situations two servomechanisms are employed to 
control two distinct variables in a plant wherein the dynamics 
of the two variables is interlinked e.g. two axis control of 
positioning servos for radar antenna and machine tools [44], 
while in many situations the systems inherently possess 
dynamical characteristics that can be appropriately modelled as 
a two dimensional nonlinear multivariable system e.g. coupled
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A l l

core reactors etc. [51,54], The analysis of self oscillations in 
systems belonging to this class is, therefore, a problem of 
considerable practical importance. Analysis of such systems is 
also important for the insight that is likely to be provided 
into the behaviour of higher dimensional nonlinear multi- 
variable systems and the choice of appropriate techniaues for 
their analysis.

Specifically, this Thesis confines attention to the 
following aspects :

(a) Investigation into the nature of possible structures for 
two dimensional nonlinear multivariable systems.

(b) Systematic analysis of the self -oscillations in such 
systems.

(c) Evolution of a method suitable for implementation on a 
digital computer and the development of computer 
algorithms.

(d) Signal stabilization of two dimensional nonlinear 
multivariable systems exhibiting self oscillations.

(e) Analysis of asynchronous excitation in two dimensional 
multivariable nonlinear systems.

The development of the Thesis is along the following 
lines :

Chapter 1 investigates the nature of possible system 
structures that a general two dimensional nonlinear multi- 
variable system can possess. Subsequently, several important 
subclasses of this general structure are obtained by successive
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simplifications. Next, necessary conditions namely 
(i) Phase, (ii) Gain, and (iii) Amplitude Ratio conditions 
that have to be satisfied for sustained self-oscillations 
in such systems are formulated. Several methods based on the 
DP analysis have been developed for a systematic analysis of 
self^oscillation in systems possessing structures of increasing 
complexity. A special feature of this chapter is the extension 
of the application of the Universal Chart [ 3,63,64 ] to the 
analysis of self-oscillations in two dimensional nonlinear 
multivariable systems. This leads to a systematic procedure 
for analysing possible self-oscillations with considerable 
economy in computational and graphical work. These methods 
lead to the determination of the frequency as well as the 
other parameters associated with the self-oscillations. All 
these methods are illustrated through application to specific 
examples and the results are compared with those obtained 
from digital simulation of the systems.

Chapter 2 is concerned with the modification and 
computerization of one of the more general methods developed 
in Chapter 1. Firstly the necessity for the modification 
leading to ease in computer implementation is examined and 
subsequently computer algorithms are developed for analysing 
self-oscillation in systems possessing the most general two 
dimensional nonlinear multivariable structure. The method 
is illustrated through application to specific examples and 
the results obtained from analysis are compared to those 
obtained from digital simulation.

All I
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XI V

Chapter 3 examines the feasibility of signal stabiliza­
tion of two-dimensional multivariable nonlinear systems 
exhibiting self-oscillation by employing an auxiliary high 
frequency sinusoidal input. Methods for analysing the 
stabilization of nonlinear single variable systems

have been extended for application to systems 
possessing a two dimensional nonlinear multivariable 
structure. The interesting phenomena of desynchronization 
and synchronization are also analysed and the results of the 
analysis are compared with results obtained from digital 
simulation. Finally, the possibility of a two dimensional 
nonlinear multivariable system exhibiting asynchronous 
excitation in the presence of a high frequency sinusoidal 
input has also been examined leading to an analysis of this 
interesting phenomenon. The results obtained from the 
analysis are again compared with those obtained from digital 
simulation for a specific system.
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