
SCOPE OP THE THESIS

The methods available in engineering literature for 

studying the behaviour (stability , characteristic roots, 

stability boundaries ana mode boundaries) of periodic systems 

can be broadly classified under four categories :

( i )  Perturbation m e t h o d s ^ *^

(i i )  Methods using Liapunov t h e o r y ^ *^ ’ ^

( i i i )  State Transition Matrix (STM) methods1 1 ’ ”̂ » 3 4

(iv) Infinite Determinant (ID) methods?*^'

Methods (i) and ( i i )  have the following limitations<.

Perturbation methods can be used for systems having small

parameters only, while methods using Liapunov theory are

limited by the ability to find suitable Liapunov function So

Also, the latter approach can only determine qualitatively the

behaviour of systems at large, and not the exact quantitative 

34-
response.

t

Methods ■( i ii )  and (iv) are based on Floquet theoryt

Of'these , the STM methods are essentially numerical techniques 
i

for determining the state transition matrix of a system over 

the interval 0 to T, T being the period of the periodic 

parameters. STM methods have found wide acceptance in litera

tu re  since they can be applied without any restriction
' > V, .

regarding the order of the system and magnitude of the para

meters. On the other hand, although the ID formulation ( f irst 

proposed by Hill for 2nd order systems) .is general in nature
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and not based on any limiting assumption, the methods that 

are presently available in literature are mainly restricted 

to 2nd order systems having small periodic parameters.

. The main objective of this thesis is to develop ID 

methods that can be applied to periodic systems irrespective 

of their order and magnitude of the parameters. With this in 

mind, the ID approach is considered afresh in this thesis, and 

arising out of this, three methods have beendeveloped for 

analysing the behaviour of periodic systems via its ID, These 

are :

( i )  A-Method,

( i i )  Residue Method,

( i i i )  Direct Method.

Another aspect that has so far limited the application 

of ID methods to periodic systems is the computational 

d ifficulty . This aspect has been given due emphasis in this 

thesis and computationally viable methods proposed.

t
The thesis is divided into five chapters, the

development being along the following lines : 

i

Chapter I .  A critical review of the ID methods available at 

1 present .is undertaken in this chapter. First, the formulation

of the 'even 1 ID equation and its subsequent reduction into a

16
' transcendental form (as done by H ill  for 2nd order systems) 

has been discussed in some detail . "  The alternate 'Odd' ID 

formulation is given next and an equivalent transcendental 

expression of this odd equation has also been obtained. The
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even and odd II) formulations, however, leal to identical 

results (except for a definite imaginary shift) and, as such, 

a conclusion is drawn that the odd formulation can also be used

with equal effect. Next, the ID methods developed by

. 2  . 1 ̂
Bolotin , and Hayashi " are examined. Bolotin’ s method

proposes to give directly the stability boundaries of 2nd order

systems in suitable parameter planes. Again, the method of

Hayashi (referred to in this thesis as the A-method) proposes

to analyse stability by checking the signs of the even and odd

IDs evaluated at the origin. A careful examination, however,

reveals that these two methods are equivalent to each other

in that one can be derived from the other. Indeed, the

stability criteria as used by these methods are derivable from

H i l l ' s  equation also, and thus, all the methods available for

2nd order systems are really equivalent to one another.

Next, the ID methods available for 3rd and higher

order systems are examined. It is seen that Hayashi or

Bolotin 's method (developed originally for 2nd order systems)

do not yield reliable results in all (higher order) cases.

25
further, an examination of the work of Lindh and Likins

(who proposed to improve upon the shortcomings of Bolotin's

method , for higher order systems) shows that this method is als<

unsatisfactory because, apart from being computationally

ic,umbersQme, it is prone to yield false stability boundaries

in some cases. Further, the method of Cooley,' Clark and

8
Buckner , which is perhaps the earliest method available in 

literature to analyse the stability of periodic systems
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directly from the roots o f  the ID, is also found to yield

erroneous results in certain cases. Next, a critical

examination also reveals certain errors in the hypothesis

35
leading to the SR method of Padmanabhan (which, neverthe

less, is a great improvement on the method of Cooley et a l ) .

37
Lastly, the works of Richards and Miller , and Richards and 

38
Cristaudo , who obtained a transcendental equivalent of the 

ID equation, have also been reviewed. It is found that no 

attempt has been made by these authors to solve this equation. 

In fact, these authors have used this transcendental equation 

only for obtaining certain small pumping characteristics of 

the mode and stability boundaries,.

The review indicates clearly that the current status 

of the methods using ID approach is that they can be used 

safely for 2nd order systems only, and that, in order to put 

this approach on a rigorous footing, there is a need to 

develop analytical and numerical techniques for application of 

this approach to yield satisfactory results for higher order 

systems.

Chapter IIo In this chapter, the basic philosophy underlying

15
the method of Hayashi has been re-examined and a new approach 

- one that utilises the knowledge of the modes and the corres— 

ponding root patterns of periodic systems of different order - 

has been'developed. This approach yields the same stability 

conditions for 2nd order systems as developed by Hayashi using 

the harmonic balance analysis. This approach also naturally 

leads to a set of three A “Cond it:i ons that are necessary and
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sufficient for the stability of 3rd order periodic systems. 

These conditions have been used to find the stability boun

daries of a system first considered by Cooley et al: such 

boundaries are found to tally exactly with the ones obtained 

using analog computer simulation. Stability analysis of 4th 

and higher order systems has also been attempted and it is 

found that although it is not possible to devise ^-conditions 

that can conclusively analyse their stability, it is possible 

to obtain certain necessary conditions for the stability of 

higher order systems.

Chapter I I I .  It has been mentioned earlier that Richards

«7 7Q
and Miller , and later Richards and Cristaudo , have 

obtained a transcendental equivalent of the ID equation of 

higher order periodic systems,, So far no attempt has been 

made to solve this TE and obtain the system CEs presumably 

because of the following reasons :

( i )  reduction of the ID equation to transcendental 

form requires the evaluation of certain residues 

of the -ID, and
t

( i i )  assuming that the residues are evaluated, the 

 ̂ solution of the transcendental equation is still

quite d ifficu lt  from the computational point of 

view.

> V,

In this chapter, a critical examination of the nature 

of the TE ( i . e . ,  transcendental equation) is first undertaken 

which reveals that in order to solve the TE it is essential
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to evaluate the residues of the system ID at certain poles 

(which are introduced in the ID to make it convergent).

Since the residues of infinite determinants cannot "be exactly 

evaluated, the main problem reduces itself to one of evalua

ting the same using truncations. Before undertaking this 

exercise with any degree of confidence, it is necessary to 

show that (i) the residues obtained using ID truncations 

converge to the exact ID residues, and (ii) the roots of the 

TE formed using the approximate values of the residues 

(obtained using ID truncations) converge to the exact system 

CEs as the truncation size is increased to infinity. With 

this in view, it is first shown in this chapter that the 

residues can themselves be expressed in the form of infinite 

determinants that converge, and, consequently, can be 

evaluated to any required degree of accuracy by considering 

sufficiently large truncations. A minimum truncation size 

necessary for proper convergence in the residues has also been 

obtained. Next, in order to prove the convergence of the 

roots of the TE, the TE has been recast into a simple 

polynomial form whose, coefficients are linear functions of 

the residues. It is then proved that the roots of this 

polynomial equation converge to the exact system roots-as 

its coefficients (linear combination of residues) are

evaluated using progressively increasing truncations,,
1

> :r, .
It follows therefore that it should be possible to • 

evaluate the characteristic roots as follows : (a) evaluate 

the ID residue's using progressively increasing ID truncations,

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r



(Id) obtain the coefficients of the equivalent polynomial 

equation using the above approximate residue values and 

(c) solve the polynomial equation. A further examiaation of 

the process of reduction of the ID equation to the TE form, 

however, reveals that, although they have so far been chosen 

in only one fashion in literature, it is possible to choose 

the ID poles (that are introduced to make the ID convergent) 

in an infinitely many ways. Two extreme cases arise in this 

•connection, namely, the ' closed-loop' (CL) choice (as made 

in literature), and the C ' open-loop* (OL) choice of poles.

It is seen that, while the CL-choice of poles is obviously 

the best for systems in which the magnitude of the periodic 

parameter tends to zero (thus resulting in a dc system), the 

OL-choice of poles yields results in one-shot for systems 

having ideal samplers (whose dc, 1st and all higher order 

Fourier coefficients are of equal strength). Now, since all 

other types of pumpings are intermediate between the above 

two cases, it is possible that there may be some optimum choice

of poles, intermediate between the OL and CL choice, that' i ■
would effect the fastest convergence in results for systems 

with'such pumpings. To investigate this aspect further, a 

numerical experimentation, involving some rectangular pumping 

syptems, has been conducted; the results, however, indicate 

that, in general, the CL-choice of poles is to be preferred.

. ‘ Finally, CEs of several‘systems have been obtained
' * !*■ V

using the CL-residue approach and compared with the same
. v

obtained using the STM method. For the same degree of accuracy,
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this method is found to he computationally faster than the 

STM method for 4th and higher order systems.

Chapter .-IV : In this chapter, the problem of evaluation of 

the CEs of a periodic system directly from the roots o f  its 

ID truncations is taken up afresh. Arising out of this, it 

Is shown that

(i )  beyond a certain order of truncation only n roots 

(o f  the ID truncations) lie  in any ’ strip1 in the 

complex plane, and <,

(i'i) these n roots converge to the exact CEs of the

system as the truncation size is increased to

. . , 4 *
infinity .

On the basis of these results a method of obtaining the CEs 

has been proposed# Further, efficient numerical methods for 

evaluating the roots of the ID trucations have also been 

developedo

It is well known that the root pattern of the ID of '

an nth order system is n-periodic in nature, i . e . ,  ( i )  the

i
ID has n roots in each of the horizontal strips of width 

2w ( 2w being the pumping frequency) bounded by the lines 

Int(z) = (2l+1)w , l = o  (the Oth strip ), +1 (the +1 th strips), 

+ 2 , . . . ,  and ( i i )  the n roots in any strip differ from 

t h o s ^ in  the next (above or below) by + j2w. • Th'is means that 

the roots in any one strip are the basic roots of the system; 

and vif  they are known, the complete ID root pattern is 

automatically obtained.

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r



9

Now, (except fox systems with very small parameters 

and high frequency pumping) the roots of lower order ID 

truncations (1x1, 3x3, » . . )  occur too randomly to yield any 

coherent information regarding the system CEs. However, from a 

physical point of view it appears logical that the root 

patterns of sufficiently higher order ID truncations should
j

approximately he n-periodic in nature, and, indeed, should 

converge to the ID root pattern as the truncation size is 

increased to infinity. If  this be so, it should then be 

possible to obtain the n basic CEs of a system by evaluating 

the roots of its progressively increasing order of ID trunca

tions and checking for the settling and convergence of n of 

these roots in any of the infinite number of strips. One of 

the main contributions of this chapter is the presentation

of a formal proof justifying this intuitive approach. Using

48
Hurwitz theorem it is proved that, corresponding to every . 

strip in the complex CE-plane, there exists an order beyond 

which the ID truncations continue to have exactly n roots 

in that strip, and that these n roots converge to the exact 

CEs of the system as -j;he truncation size is increased to 

infinity.
\

In order to study the settling and convergence
i ■ •

characteristics of the truncated ID roots, a numerical experi

mentation (NE), involving several systems, has been conducted, 

Results show'that the roots in the Oth strip converge fastest 

which could as well be inferred from a physical point of view. 

What is more significant, the NE reveals that the minimum

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r



truncation size that one needs go up to for definite settling 

as well as sufficient convergence of n Oth strip roots is 

the one in which the Oth strip roots are just repeated, 

near-period ic ally, in the +1th strips.

Lastly, two numerical techniques (which made the NE 

possible) for extraction of the roots of ID truncations have 

been presented in this chapter. The first, which is applicable 

for systems with cisoidal pumping, is an efficient algorithm 

for numerically expanding a truncated ID equation into a 

polynomial form, the evaluation of whose roots is easy. The 

second method, which is very general in nature, considers the 

systems in the state variable form and obtains the ID equations 

such that the evaluation of their roots becomes an eigenvalue 

problem. Computationally, the method for cisoidal pumping 

systems has been found to be much faster than the STM methods, 

while the general is on a par.

Chapter V : The methods developed in the preceding chapters

(.capable of analysing periodic systems having specific

parameter values. In this chapter, the behaviour of such 
t .

systems* when the parameters are varied is studied using a 

root-locus approach, attention being confined to phase and 

frequency coherent systems with cisoidal pumping which may 

also be represented in the form of a control system that has 

a plari-t,*. q(D)/p(D) and a loop-gain of (KQ + 2Kcos2wt).
•. 4

v Of the three parameters involved, in the loop-gain 

(namely, K0 , K ahd w), it is felt that K is of greatest
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importance, and the loci of the CEs of several 'minimum' 

plant configurations for variation in K (with w = 1 and 

KQ = 0) have been studied. (Since it is possible to normalize 

aperiodic system with respect to frequency, unity w systems 

are only considered. Again, since the effect of var iation in 

be conveniently taken care of by considering different plant 

configurations, KQ is taken to be zero.) Such loci have been 

termed as the K-loci of periodic systems. . The plant configura

tions considered are :

(i) 2-pole case : The Mathieu system, which in the control 

£<9i2m has a plant 1/(D +KQ) and a loop gain of 2Kcos2t, is the 

kernel 2-pole system. That is, the CEs of any 2-pole plant 

can be obtained if the K-root loci of this plant, with Kq 

taking different values, are known. Such loci for some values 

of KQ have been numerically evaluated.

(ii) 3-pole case : The kernel 3-pole plant in normalized

form is 1/ D(D+a) (D-&)+K0 , i .e . ,  -if the K-root loci of this
t

plant for different values o f  ( a , ' K  ) are known, the CEs of
i

any 3-pole system can be obtained. For convenience in 
t

presenting the results, however, the root loci of the 

i l/(D+2bcote)(D-bcote+jb) (D-bcote-jb) plant, for some values 

of b and 9 , have been evaluated. The (a, KQ.) to (b ,0  )

' ,and the reverse transformations have been obtained.

(iii) 2-pole 1-zero case : D/(D +KQD+a) is the" normalized
v

kernel 2-pole 1-zero plant, and if its K-root loci for differej 

values of 'a 1 and KQ are known, the CEs of any 2-pole
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1 -zero system can be obtained,, For convenience, however, 

this plant has been recast in the D/(D+bcos0+ jbsin^) (D+bcos0- 

jbsin#) form, and the root loci for different values of b and

9 have been evaluated.

(iv)  4~pole case : Compared to 3-pole or 2-pole 1-zero 

cases, 4 “P'ole plants have an additional degree of freedom*

This means that the complete normalized K-root lociof 4-pole 

systems would have three variable parameters. In this chapter, 

however, the K-root loci of the plant 1 / (D 4+KQ) ,  for 

different values of KQ , have only been obtained. It is seen 

that these loci provide an understanding of the behaviour of 

general 4 -pole systems as well*

(v) 3 -pole 1 -zero case : 3 -pole 1 -zero plants also have

got three degrees of freedom, and their normalized K-root loci 

will have three variable parameters. However, the root loci

•z
of the plants D /(D^+KQ) have only been studied.

In order to predict exactly the small pumping behaviour

t

of periodic systems, an analytical method, involving the 3x3

ID truncations, has been developed. In addition, in order to

study qualitatively the behaviour of the root loci for large

values of K (without talcing recourse to involved numerical

i
calculations)', an approximate method, involving the higher

order ID truncations in a certain simplified form, has been 
t

proposed. Arising out of a study of the root loci of several
« , .«

systems using these methods, some interesting properties of the 
\

root lociof general n-pole rn-zero systems have been observed.
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Several examples have been considered in this 

chapter to demonstrate the use of the above properties in 

quickly ascertaining the approximate nature of the root loc 

of periodic systems, and, consequently, in obtaining their 

stability boundaries.

It  is believed that the thesis contributes to a 

clear understanding of the ID approach, and establishes it 

as one of the most effective methods for analysing periodic 

systems. Moreover, the root-locus study undertaken provide 

a physical picture of'the behaviour of such systems for 

variations in the parameters.
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