
Abstract

Tomographic reconstruction from incomplete, limited, and noisy projection 

data is an ill-posed problem having a numerically sensitive or noisy solution and the 

conventional reconstruction techniques such as convolution back projection (CBP) 

and filtered back-projection (FBP) do not yield good results in such a situation. 

Numerous techniques have been proposed in the recent past for the reconstruction 

from such limited, noisy projection data, in which a priori knowledge about the image 

has been used to improve the reconstruction quality.
This dissertation deals with the tomographic reconstruction from severely lim

ited and noisy projection data, where the reconstruction problem has been formu

lated as the detection and estimation o f the objects in the image. The problem is 

approached from an optimization view-point and several randomized search and op

timization techniques, namely, genetic algorithm (G A ), evolutionary programming 

(EP), and simulated annealing (SA) have been used to obtain a near optimum 

maximum-likelihood estimate o f the images being reconstructed. A model-based ap

proach has been used here, in which an image model is assumed based on the a priori 

knowledge about the type o f objects in the image, their geometries, and intensities

along with the background intensity.
Several modifications have been proposed in GA, EP, and SA framework to 

adapt them to the problem of model-based tomographic reconstruction and extensive 

results have been presented to demonstrate the suitability o f these techniques for the 

detection and estimation o f 2-D images containing circular, elliptical, polygonal, or 

irregular shaped objects and 3-D images containing spherical or ellipsoidal objects.

A  novel optim ization approach has been proposed for a class o f problems, in 

which the problem can be subdivided into several subproblems such that the objective 

function o f the original problem (or the required computation) can be expressed as a 

function o f the objective functions (or the required computation) o f the subproblems. 

In this approach, multiple GA (M G A ), multiple EP (M EP), or multiple SA (MSA)
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algorithms have been used to obtain the solution o f  the original problem  with each
C.A, LP. or SA working on a separate subproblem. The proposed M G A , M EP, and 

MSA approaches have been applied for the m odel-based reconstruction o f  2-D  as well 
as J-D images. These techniques have been demonstrated to  be much faster than 

then conventional implementations and they also yield m ore accurate results.

Finally, an application o f the proposed m odel-based reconstruction techniques 
implemented using GA, EP, and SA has been presented in geotom ographic recon

struction for the detection o f high contrast subsurface anomalies in cross-hole seismic 

tomography. An alternative cell-based approach using G A  has also been presented

foi the rcxonstiuction o f  such anomalies. In addition, a faster ray tracing technique 
has been suggested.
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