
Chapter 1

I n t r o d u c t i o n

In this thesis the quantum dynamics of nonintegrable systems is studied using the 

quantum fluid dynamics (Q1;D)[1J and the quantum theory of motion QTM [2J as 

developed by de Broglie and Bohm in their causal interpretation of quantum mechanics 

This introductory chapter comprises five sections.Since the behaviour of 

nonintegrable systems in the quantum domain is intimately connected with the 

corresponding classical domain dynamics, we begin with the section dealing with the 

classical dynamics of integrable and nonintegrable systems.This is followed by the 

section reviewing certain important approaches to the study o f chaos in quantum 

mechanical systems.The quantum fluid dynamics or the hydrodynamic formulation of 

quantum mechanics constitutes the third section, following which the quantum theory of 

motion or the causal interpretation o f  quantum mechanics is introduced.The fifth and final 

section discusses the principal motivation and objective o f  the present work.This section 

also summarizes the contents o f the thesis.

1.1 Classical dynamics of integrable and nonintegrable systems

The exactly solvable systems in classical mechanics,usually referred to as 

"integrable" systems display motion which in a certain sense is well ordered and 

regular.The phase space trajectories o f such systems are confined to certain well defined 

regions o f phase space displaying certain symmetries and little or no change in behaviour 

with "small" changes in initial conditions.However.it has been found that introduction of 

a small but suitably chosen perturbation term to the original Hamiltonian o f certain 

systems can make significant changes in their dynamic behaviour.While some measure 

o f original regular motion may remain,there appears a regime o f highly "irregular" motion 

where the trajectories become extremely sensitive to small changes in initial conditions 

and can move "erratically" over a large part of the dynamically (energetically) accessible
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phase space.The dynamics is then regarded as chaotic and the system is considered to 

exhibit chaos.lt should be noted that whereas chaotic dynamics may appear random 

without any obvious correlation between successive states o f such a system,the dynamics 

nevertheless is strictly deterministic obeying the fundamental equations o f  classical 

mechanics.

The presence of chaos plays a very important role in different areas of physics and 

chemistry such as celestial motion or astronomy [3], accelerator physics |4],plasma 

physics 15], theories o f chemical kinetics [6,7] and in a host o f other related [8-13] 

disciplines.The study of nonintegrable and chaotic dynamics also has important 

implications in quantum mechanics [14].

In this section certain fundamental concepts o f classical dynamics essential for the 

study integrable and nonintegrable Hamiltonian systems are briefly introduced 

followed by short discussion on certain computational techniques employed to investigate 

integrable and nonintegrable systems.

1.1.1 Invariant tori and onset of chaos

A conservative Hamiltonian system o f N degrees of freedom is considered for 

which H(p,q)=E.The state o f the Hamiltonian system is described by N generalised 

momenta p=(p,....pN) and the corresponding canonically conjugate coordinates 

q=(q,....qN).The time evolution o f the phase space coordinates (p,q) is then determined by 

the equations o f motion,

If then the system has N single-valued analytic functions o f  p and q, f,(p,q) such that the

P = -vjn< ps (1.1.la)

4=VpH(p,q) (1.1.1b)
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Poisson bracket for any pair

l f „ f j )= Q  iJ = l,....N ( 112 )

then the system is exactly integrable [15,16] and the phase space trajectories can be 

shown to lie on manifolds with N-dimensional toroidal topology.

Introducing canonical coordinates referred to as the action-angle variables (1,0) 

[17J if the Hamiltonian can be expressed in terms o f N action coordinates I only, 0 being 

the coordinate vector, then the Hamiltonian has the form

H=H(I) ( 1 1 3 )

with the Hamilton's equations o f motion as

i= -V 0H(I)=o (1.1.4a)

Q=VjH(I )=&>(/) (1.1.4b)

where <d(I) is the frequency vector «= [© ,....a>N] The preceding equations can be trivially 

integrated to obtain
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I=constant (1.1.5a)

0 = g>(/ )f+6 (1 1 5b)

where 5 is a set of arbitrary phases.Each element of the action vector specifies the 

position o f an N-dimensional torus in the phase space and the conjugate vector of angle

0 specifies the position of a trajectory on it.

Thus the problem of solving the original equations o f motion (1.1.1) can be 

accomplished once a transformation to the action-angle variables can be found.This 

transformation can be generally obtained using the canonical perturbation theory [18,19] 

where essentially each of the generalised coordinates and momenta q,. ..qs ,p,....pN are 

expressed as a power series in all the new variables I,....IN,0l....0N,.The unknown 

coefficients in the series are then obtained by substituting the series in H(p,q) and the 

equations o f motion (1.1.1).Equating those expressions to the equations(1.1.4) up to the 

lowest order terms in 1,0 the lowest order coefficients can be found.The process is 

repeated again to find the higher order coefficients to obtain a series.A system is then 

regarded as integrable if this series is convergent.Such series were examined in detail by 

Birkoff [20,21] who studied the conditions for their existence and are referred to as the 

Birkoff series.

For integrable systems defined by equations (1.1.5) the angle variables are seen 

to be periodic in 2iz because o f the toroidal topology o f the manifold on which such 

trajectories lie. Accordingly the motion can be expressed in terms o f a finite Fourier series 

as follows
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qU ) = £  a ^ l  )exp(m .O (/))=]Ta^/ )exp(in.(o> !•&)) 
n tt (1.1.6a)

p it ) = T  bn(I )exp(m .0(r))=£ bn(I )exp(m.(u f+fi))
n n (11 6b)

where a„(I),bn(I) are N-dimensional vectors of Fourier coefficients each component being 

labelled by an N-dimensional vector n o f indices.The dynamics in such cases are referred 

to az quasiperiodic The motion of a particle on an invariant torus characterized by the 

action I-constant and the frequency vector o)(I) is defined uniquely when the components 

o f the frequency vector are functionally independent.The system is then considered to be 

a nondegenerate one with the nondegeneracy condition being given as follows

det
&0,(/)

=det 0-7i(I )
c l I c l I* J

*0 (1 17)

In general the set o f frequencies {to,} i= I_N are incommensurate and the trajectory

covers the entire torus and is open in that it can never close on itself.However, it may so 

happen that the frequency components loose their functional independence so that the 

following relation holds

( 1.1.8 )
i = l

for a certain set o f integers {m j i=l....N .Under such condition the trajectory is said to be 

in resonance and the system is considered to be degenerate.lt has been shown by Walker 

and Ford [22] that the existence o f two or more resonant frequencies corresponding to
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more !har one pair of degenerate trajectories on the invariant torus can give rise to a 

divergent BirkotY series [ 18j with the introduction of an external perturbing 

Hamiltonian.Under this condition the system loses its integrability and the invariant torus 

with the resonant trajectories is broken up in the sense that there are no longer any well 

defined action vectors determining the torus .The phase trajectories of such destroyed tori 

contains elliptic and hyperbolic fixed points in their neighbourhood.The elliptic fixed 

points correspond to stable periodic (closed) orbits and is surrounded by smooth curves 

corresponding to "higher" order tori which may be intact.The hyperbolic fixed points 

correspond to unstable periodic (closed) orbits and the neighbouring phase space becomes 

dense with the so called homoclinic points [3,16,23], The phase space trajectories near 

homoclinic points are extremely complicated and takes on an apparently random character 

signifying chaos.In such regions o f the phase space any infinitesimal change in initial 

conditions of a trajectory can give rise to completely different motion uncorrelated to its 

original dynamics.lt has been observed that in such cases effects o f the order 1 may result 

from initial changes of the order 10'16 in a short time [24,25],

It has been shown by Seigel [26J that for randomly chosen analytic Hamiltonians 

with N>2 the nonintegrable Hamiltonians are densely distributed among all analytic 

Hamiltonians.Further it has been observed [27 ] that the integrable Hamiltonians are not 

similarly dense everywhere, so that the dynamics o f an integrable system perturbed with 

a small nonintegrable term in the Hamiltonian assumes great significance in the study o f 

transition from integrable to nonintegrable dynamics.The theorem of Kolmogorov,Arnold 

and Moser [15-16,28-29] is o f vital importance for such perturbed integrable Hamiltonian 

systems.Essentially the theorem states that for extremely small strength of the 

nonintegrable perturbations the erstwhile smooth invariant tori corresponding to the 

integrable system undergoes certain distortion but retains its toroidal structure, so that the 

phase space trajectories o f the perturbed system are still constrained to lie on the tori 

albeit distorted now termed as the KAM tori.This implies that the transition from 

integrability to nonintegrability is not a sharply defined process in the sense that for 

sufficiently small values o f perturbation, the trajectories do retain certain "integrable"
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characteristics However, for sufficiently strong perturbation the KAM tori break up and 

the trajectories are free to wander over the accessible phase space,the latter being now 

covered with the homoclinic points giving rise to extreme sensitivity to initial condition 

signifying chaos.

1.1.2 Techniques for studying nonintegrable dynamics

A. Surface o f sections and return maps

The concept o f surface o f section was first introduced by Poincare to study the 

essential characteristics of a phase space trajectory in a convenient form.For conservative 

Hamiltonian systems with two degrees o f freedom the energy is a conserved quantity and 

the Hamiltonian is then an isolating integral of motion and can be written as

U{PXJ>2̂ 7 > =E O -1-9)

where the energy E is constant and restricts the trajectories to lie on a three dimensional 

surface within the four dimensional phase space.Equivalently one o f  the generalised 

momenta components can be expressed as

P2=P2<Pv(hA2’E) • (1.110)

If now the system possesses another integral o f motion

/ 2( p , , p 2,<7,,<72) = C 2 ( 1 . 1 . 1 1 )

where C2 is a constant then it too defines a three dimensional surface.Since for specific 

initial conditions E and C2 are fixed the phase space trajectory will be constrained to 

move on the two dimensional surface o f  intersection o f the two constant surfaces which 

is the toroidal surface.Combining equations (1.1.10) and (1.1.11) p, can be written as
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Pi (I 1 12)

If now the intersection o f this two dimensional surface is considered with the surface, say 

q,=0 a one dimensional curve is obtained which is nothing but a mapping o f the phase 

space trajectory on the surface q;=0.This is a method o f  obtaining a two dimensional 

mapping of a four dimensional phase space trajectory is referred to as the Poincare 

mapping or the method o f Poincare surface o f  section.This method is applied to 

determine whether a Hamiltonian system has any integral o f motion.The Hamilton's 

equations are solved numerically for specific energy values and a pair of coordinates 

(p-,q; ) may be plotted for q,=0 and p,>0 to have a surface o f section mapping o f the 

trajectory.For nondegenerate integrable systems, because the trajectories lie on the toroidal 

surface.the plot so obtained is a one dimensional curve while for a trajectory with 

commensurate frequencies the mapping displays a number o f fixed points which are 

always mapped unto themselves.The situation is significantly changed in absence of 

integral o f motion.For systems having a small amount o f  nonintegrability obeying the 

K.Ai’vi theorem the curves obtained are conspicuously distorted reflecting the KAM 

tori.However,for higher values o f energy o f such systems with the increasing 

nonintegrability the KAM tori are broken and instead o f  smooth curves the surface of 

section displays a random scatter o f points heralding the onset o f chaos.

While the surface o f  section o f Poincare requires the solution of the relevant 

Hamilton's equation be obtained,the essence o f the dynamics behind an evolving system 

can be studied from the time series o f  a single dynamical variable as well [31j.If z(t) be 

the time dependent variable sampled at a time interval t  we have the following time series

z0= z(0 ),z ,= z(x ),...^ ;i=z(n-c) (1.1.13)

and a certain sequence o f n dimensional vectors can be formed as follows,
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(z(O U (T )...^(»T ))
( z ( : W : + r ) „ 4 T + n 7 1 )  (1.1.14)

(z(k t  ),z(*i +T)...Jz(kx +nT))

where I represents a time delay which is chosen to be an integral multiple of x.Such a 

sequence o f vectors may be plotted conveniently for n=2 or n=3 to give a phase plot ol 

the dynamics.This procedure would be strictly valid for systems with two or three degrees 

o f freedom whereas for systems with higher degrees o f freedom a projected plot will be 

obtained.This construction is referred to as the return map for obvious reasons.

B. Spectral properties

For a Hamiltonian system with quasiperiodic trajectories, the Fourier transform 

reveals a finite number o f discrete lines.The trajectories with incommensurate frequencies 

also display a finite spectrum [32],However, in chaotic systems the Fourier transform of 

trajectories reveals a dramatic difference with a very "grassy" and almost continuous 

spectrum [33],But the spectral analysis o f trajectories have a limitation in that both 

deterministic chaos and random signals produce the similar continuous spectra making a 

distinction between them difficult.

C. Lyapunov exponent and Kolmogorov-Sinai entropy

Trajectories in the chaotic region o f the phase space for a nonintegrable system 

are extremely sensitive to initial conditions.Trajectories which are infinitesimally close to 

one another separate rapidly and proceed in a completely independent manner.For chaotic 

systems there exist certain directions along which such trajectory separation evolves 

exponentially in time.

If  the continuous motion o f a dynamical system is discretized and if the motion 

can be obtained as a mapping T of the state vector z defining a phase point then we have

z„r-tz. < " ' 5 ,

9

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r



where n is the discrete time index.The Jacobi an matrix M of the mapping T is defined as

'.vhere N is the degrees of freedom for the Hamiltonian system considered. For a

where all eigenvalues up to and including the kth one have absolute values less than 

unity.Then there are 2N-k number of eigenvalues with absolute values greater than or 

equal to unity and correspondingly there are 2N-k eigenvectors defining 2N-k directions 

along which the state vector z is stretched in length.Therefore along these directions an 

element o f phase volume undergoes expansion and consequently there are contractions of 

the volume element along the remaining k directions.The Lyapunov exponent [34-37] is 

defined as

Hamiltonian system phase volume of the system is a conserved quantity so that I M | =1 

at all times. Diagonalization o f the matrix fvl yields a vector o f 2N eigenvalues a  which 

are in general complex valued.Arranged in ascending order o f absolute values

l®i I ^ l®21 l°*l

— In | a f | . (1.1.17)

After n mappings a state vector will be stretched in a particular direction as
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zi (n ) - ;zi (0)exp(>.i /i t ) (11.18)

x being the time step If |d |  be the initial infinitesimal separation (Euclidean norm) 

between two trajectories and I d, I be the subsequent separation then it has been shown 

[37 j that the largest Lyapunov exponent may be obtained as

(1.1.19)

The computation o f Lyapunov exponent is one of the easiest ways o f identifying both 

qualitatively and quantitatively the nature o f dynamics o f a classical system with positive 

values signifying an extreme sensitivity to initial conditions thus identifying the presence 

o f chaos.

The existence of positive Lyapunov numbers for a dynamical system has 

significant effect on an element o f phase volume Al'(t) o f a system.In such cases because 

o f the exponential separation o f trajectories, the phase volume element soon acquires a 

very complicated tangled structure.If the dynamically accessible phase space of the system 

is considered to be permeated with a phase fluid then such a fluid may be considered to 

have undergone a thorough mixing with the empty phase space.However, since in 

Hamiltonian systems the phase volume is conserved a concept of a coarse phase volume 

AF(t) is introduced which gives the effective volume o f the phase element.This coarse 

phase volume may now include the empty phase space within it as cavities so that we 

have A P(t)> AI'(t) because o f the mixing of the phase volume element ar. a consequence 

to the chaotic dynamics o f the system.The Kolmogorov-Sinai entropy is then calculated 

as
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A = l n A r /(0  , (1 1.20)

The Kolmogorov-Sinat entropy is related [39] to the positive Lyapunov exponents as

. ( 1.1.21)
x>o

1.2. Nonintegrability and chaos in quantum systems

The role o f nonintegrability and chaos in quantum systems has gained importance 

in recent years.Since the concept o f integrability and the whole edifice of dynamics in 

general is firmly grounded in classical mechanics, the study of quantum chaos has 

refocussed attention on to the classical correspondence o f  quantum mechanics.Therefore 

in the study o f nonintegrability and chaos in quantum systems the semiclassical 

quantization of classical systems holds a significant position.So this discussion on chaos 

in quantum systems begins with the method o f semiclassical quantization.

1.2.1 Semiclassical quantization rules

It was Neils Bohr who first proposed certain quantization rules to modify the 

classical mechanics to arrive at an expression for obtaining the energy levels of the 

Hydrogen atom.This was superseded by the wave mechanics.Prior to that, the Bohr 

quantizaton rules were generalized by Sommerfeld and others for application to other 

systems like the helium atom.However, this approach was unsuccessful for such complex 

systems.

It was pointed out by Einstein [40] that only classical systems with invariant phase 

space tori could possibly be quantized by the Bohr-Sommerfeld quantization 

rules.According to him systems without well defined phase space tori could not be 

quantized using those rules.

The best known semiclassical approximation for the eigenvalues o f a quantum 

system within the ambit o f Schrodinger wave mechanics have been provided by Wentzel-
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Kram'jrs-Jirillouin (WKB) method |41J The basic idea is to solve Schrodinger's equation 

by substituting an ansatz for the wavefunction in the form

y\/(q)=A(q)cxp(iS(q)ltl) (1-2.1)

where terms o(tl:) in S(q) are ignored and vy is required to decay exponentially in 

classically forbidden regions.Near the classical turning points in q the ansatz is to be 

replaced by the actual expression of the wavefunction. Asymptotic expansion o f the exact 

wavefunction then enables connection between classically allowed and forbidden 

regions.The result for all turning points are combined to finally obtain a quantization 

condition ,

)d4=(n+hfl . (1.2.2)
Zit 2

For completely integrable motion the canonical coordinates can be transformed to action-

angles variables so that for a given value o f the action vector I=(I,,..... IN) the components

defined as

=— $pdq (12.3)
2 n c t

where C, are the N topologically independent contours on the N-dimensional torus 

associated with l.The Emstein-Brillouin-Keller quantization rule [42 J allows a bound 

state to be associated in the semiclassical limit with the torus whose action then satisfy 

the quantization rule
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(1.2.4)

where m is the vector of quantum numbers and a  represents the vector o f Maslov indices 

I 43 ( These refer to the number of classical turning points along the paths C,.The energy 

o f  the nth state is then obtained as

Eu =H(Im) d .2 .5 )

for an integrable Hamiltonian.

The salient feature o f Keller's treatment of wavefunctions obtained from the 

invariant tori is that it allows one to draw parallels with classical mechanics and proceed 

on to weakly chaotic situations where the classical KAM theorem allows the presence of 

distorted KAM tori The KAM theorem ensures that the transition from integrable to 

chaotic regime is in general a continuous process with a close coexistence of invariant tori 

and chaotic regions being the prominent feature in this transition region.So using Kellers's 

idea quantum mechanics can be considered to retain its classical correspondence into such 

weakly nonintegrable systems.

This idea o f classical correspondence for weakly nonintegrable systems has been 

successfully used by Delos and Swimm [44J relying on the fundamental work done by 

Gustavson [45] and Birkoff [46].The basic philosophy is to examine the motion o f a 

dynamical system in the neighbourhood o f a point o f stable equilibrium.The Hamiltonian 

is expanded in the momentum and position coordinates about the point so that the kinetic 

energy is quadratic in momenta and the potential energy term is expanded in powers of 

position coordinates about the point o f  equilibrium.The lowest term then has a quadratic 

form in position coordinates.The Hamiltonian is diagonalized by appropriate linear 

orthogonal transformation and with the additional transformations p~p/V(mco) and 

q=qV(mo) the original Hamiltonian is obtained as a series
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(1.2.6)

where H(1) (i=l ..r ) is a homogeneous polynomial o f ith degree in p and q.The aim is to 

express H(l) as a function o f the variables pt=(plk2+qt*)/2 ,thus reducing the partial 

Hamiltonians H(l) to its normal form.The above procedure is equivalent to finding n new 

approximate constants of motion in suitably transformed coordinates.Finally transforming 

back to original coordinates a number o f integrals o f motion equal to the number of 

degrees o f freedom are found.As in general the normalization procedure does not 

necessarily converge the series given by equation (1.2.6) has to be truncated.Swimm and 

Delos [47] carried out this procedure for Hamiltonians o f  Henon-Heiles type [30 ] and a 

truncation at the eighth order was regarded sufficient.

The quantization of the Henon-Heiles system worked out by Swimm and Delos 

[47 ] with the EBK rules [42] then require that

P k=(phQk)l2 ={nk+^)h (1-2.7)

where nk>0, the 1/2 corresponds to a Maslov index [43] o f value 2 for each degree o f 

freedom.

The energy level spectrum is then obtained as

( 1.2 .8)
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whert- H is the Hamiltonian after transformation to the normal form and truncation at a 

suitable term.It has been observed [47 ] that for the third order perturbating potential 

term

H0) = \q2(qf+r\q^) ( 1 2 9 >

where \=  -0 .l,rj= 0 .1 and incommensurate frequencies ©,=1.3 and g>; = 0.7 the maximum 

error when compared with results obtained from exact quantum mechanical approach do 

not exceed 0.5% for the 82 bound level states out of the 83 levels computed from solving 

the Schrodinger's equation.

An alternative way o f  applying the EBK rules is to use the multiperiodic behaviour 

o f the classical trajectories.Since according to equation (1.1.6) the coordinates o f a 

classical trajectory can be expanded in a Fourier series with the number of component 

frequencies equalling the number o f  degrees o f freedom,the classical quantization rules 

can be applied to these frequencies without the necessity of identifying the supporting 

invariant tori.This idea has been applied by Marcus and his co-workers [33,48,49] and a 

few examples were treated numerically [50 ] The principle feature in this approach is the 

evaluation o f the approximations to the energy levels o f a conservative Hamiltonian 

system from the frequency spectrum of the integrable trajectories o f that system.By 

numerical trials a function E(to,....©„) is obtained giving the energy o f the classical 

trajectories whose frequencies are co,,....o)n.To obtain the Hamiltonian H(I,,....In) as a 

function o f the action integrals it is noted that H(I) is not uniquely determined by the 

function E((o).For each component vector in the frequency (o) space the values o f the 

corresponding actions have to be obtained mdopendently.Marcus and his co-workers 

tackled this problem by selecting initial conditions for the perturbed system which satisfy 

the EBK conditions for action integrals in the integrable (unperturbed) system.The action 

integrals then become fixed uniquely allowing the energy levels to be computed by the 

discrete values o f H((n,+l/2)h,(n-,+ l/2)1i,....) in terms o f the quantum numbers
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(n,,n ) The energy levels calculated for the Henon-Heiles system in equation (1 .2.9) are 

found to be in excellent agreement with that in the exact quantum calculations

1.2.2 Energy level statistics and quantum chaos

The energy level statistics was first introduced by Wigner I 51 j to formulate a 

general theory that could describe the features o f nuclear energy levels following certain 

ideas o f Dyson [ 52 ] regarding the nature of the matrix elements o f the Hamiltonians of 

complex nuclei.According to Wigner the matrix elements are not analyzable in detail and 

a statistical approach was called for.

If the level spacing distribution P(s) is defined so that P(s)ds is the probability of 

finding the spacing between any two neighbouring energy levels in the interval s and s+ds 

then the Wigner distribution o f energy level spacings in terms o f the average spacings is 

obtained as

The energy levels for a random Hamiltonian matrix are correlated exhibiting level 

repulsion.However, for a random distribution o f energy levels it is found that the level 

spacing distribution has the form o f a Poisson distribution

Pp(s)= ± c xp -W  (1.2.11)

where once again D is the average energy level spacing.

The fundamental problem of the random matrix theory [53 J is then the setting 

up o f a normalized probability distribution on the elements o f the Hamiltonian matrix 

which should retain its norm under similarity transformations.Based on the nature o f the 

Hamiltonian under consideration viz., real symmetric,hermitian and real quaternion the
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probability distributions represent Gaussian Orthogonal Ensembles (GOE ) or the Wigner 

distribution.Gaussian Unitary Ensembles (GUE ) and the Gaussian Symplectic Ensemble 

(G SF ) respectively

It has been suggested [14J that in the semiclassical limit as in the classical 

mechanics an integrable system undergoing a transition to chaotic regime loses the 

constants of motion accordingly in the quantum domain analogue the quantum numbers 

defining the quantum dynamics lose their significance.Under this condition, the level 

spacing statistics could be applied to study the transition to chaos in the quantum 

domain.The level spacing statistics first applied by Berry and labor [54] for studying 

integrable systems in the quantum domain was observed to exhibit a Poisson-like 

distribution.

The first direct evidence of manifestation o f  chaos through spectral properties ot 

energy levels was obtained by McDonald and Kaufman [55] in their studies on integrable 

and nonintegrable billiards.lt was found that an integrable billiard displayed maximum 

probability o f small spacings while a nonintegrable billiard exhibited a certain evidence 

o f level repulsion signifying a presence o f correlation between energy levels.This 

observation essentially mirrors the Poisson distribution and the Wigner distribution o f 

energy levels in the integrable and nonintegrable chaotic domains respectiveiy.This fact 

has been further confirmed for the nonintegrable Sinai billiard [56] which exhibits [57] 

a A,-statistics [58] close to that of the GOE (Wigner distribution), while an integrable 

billiard was found to display a level spacing statistics following the Poisson distribution 

[59,60],However,a rectangular incommensurate billiard which is classically integrable was 

found to have large fluctuations away from Poisson distribution for small level spacings 

[59], This was shown to be specific [61] for square well potentials.

Corresponding to the transition from regular integrable to chaotic motion in 

classical dynamics the spectral statistics o f the energy levels show a shift from the poisson 

statistics to the Gaussian Ensemble statistics.Rigorous analyses have been carried out by 

Pechukas [62 ], Yukawa [63 ] and Nakamura with his coworkers [64 ].A set o f'equations
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of motion' for a nonintegrability parameter X has been obtained from Schrodinger 

eigenvalue problem 164],The equations of motion so derived has been shown to be 

equivalent to those of a completely integrable N-particle Calogero-Moser system with an 

internal complex vector space.

Numerical computations o f the transition o f spectral statistics have been carried 

out by Seligman and co-workers [65] who have made a detailed study of a system with 

the Hamiltonian

=1/2 (p? v t )  ♦ Vt(x,) * V M  + ( 1 2 12)

where V 1(x)=V1( a 1x*+P1x4+7 1x6) i= 1,2,12 with the system being integrable for V P=0.This 

model has been studied in regular as well as chaotic regime.The spectral levels were 

found to change from Poisson to Wigner distribution (GOE) reflecting the change in the 

corresponding classical dynamics.A coupled Morse oscillator in integrable and chaotic 

regimes has been found [66] to display a similar transition in the energy level statistics.In 

this case the nearest neighbour level spacing histograms were fitted to a Brody 

distribution [67] which is a single parameter function obtained by interpolation between 

Poisson and Wigner distributions.

Recently highly excited Hydrogen and Hydrogen-like atoms (which are effectively 

single electron systems) subjected to external electric and magnetic fields,have provided 

excellent case studies for understanding different aspects o f quantum chaos.With the 

advent o f  tunable lasers such atoms can be excited to Rydberg states [68 ] making the 

conditions for investigating chaos in such systems experimentally feasible. A large number 

o f experimental and theoretical investigations have been carried out [68-74],A 

Hydrogenic Rydberg state atom subjected to an oscillating electric field has been studied 

[69] revealing transition from regular to chaotic behaviour depending on the field strength 

and frequency.The quadratic Zeeman effect for a Rydberg state atom has been 

investigated [74 ]expenmentally and theoretically [68,70,71,75 ].It has been found that for
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such systems the electron motion is regular for weak magnetic fields, the corresponding 

energy spectrum following the Poisson distribution for level statistics With increasing 

magnetic field strengths a smooth transition to chaotic motion is reflected by a shift to 

the GOE statistics exhibited by the energy level spacings.For the transition regime 

corresponding to intermediate field strengths the level spacing statistics follow a statistics 

that is intermediate to the Poisson and Wigncr (GOE ) distributions.

A related model for the study o f quantum chaos is a Hydrogen atom in a van 

Waals interaction potential.The interaction is expressed [72,76 ] by the Hamiltonian

H - P - - — (x2+y2+2z~) (1.2.13)
2 Y,

where y, -1/(16d3),d being the separation distance between two atomic dipoles whose 

interaction gives rise to the van der Waals (induced dipole-dipole ) interaction.This system 

has been generalized [77 ] to obtain a generalized Van der Waals interaction Hamiltonian

H = S l-U - i( x 2+y2+ fsV) (1 2  14)

which covers different systems for appropriate choices o f adjustable parameters [78J y and 

P.Such a system has been treated as two coupled anharmonic oscillators The system 

displays [79 ] successive chaos-order-transitions for increasing values o f p parameter for 

arbitrary y.The corresponding quantum system has been treated [80 ] to obtain the energy 

level spacings which displays a sequence of level spacing statistics [81] with increasing 

P values mirroring the classical dynamics.

1.2.3 Semiclassical path integral quantization

Feynman derived an expression for the quantal propagator as an integral over 

classical paths, o f terms involving functions o f classical actions [82],As the classical
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propagator theory involves eigenfunctions and density of classical states , a connection 

between classical paths and quantum eigenvalues was expected to be existent. I his idea 

was first pursued by Gutzwiller [83-86] and Balian and Bloch [87-90],Various aspects o f 

the path integral approach as applied to integrable systems have been discussed by Voros 

[91] and Berry and Tabor [54,92]

To arrive at the semiclassical approximation to the propagator , the Feynman 

propagator is expressed as an eigenfunction expansion.If ft be the Hamiltonian, En be the 

energy eigenvalues and be the corresponding eigenfunctions the propagator K (q\q ,t) 

is given by

The Laplace transform to the energy domain is then the energy Green's function

(1.2.15)
n

(1.2.16)

which is defined for Im(E) >0 and has the final form

i y
* n E~En

(1.2.17)

Applying the identity

lim(------! - ^ - )= P (
e-o E-EQ+ie

(1.2.18)

where P stands for Cauchy's principal value,the Green's function can be expressed as
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R e G iq , ,q ,E ) = '£ t i { < l ' ) * n{ q m E - E n) . ( 1.2 .19)
ft

The density o f energy states p(E) is obtained by equating q'=q and integrating over q to 

yield

for a system with Hamiltonian A.In the propagator formalism p(E) is expressed as

where S(q ',q,t) is the classical action along a path q(t),p(x) satisfying the boundary 

conditions q(0)=q and D[q] indicates integration over all such classical paths satisfying 

the boundary conditions.A stationary phase approximation o f equations (1.2.22) then 

yields the semiclassical approximation to the Feynman propagator, with the second 

variation o f S introducing the determinantal Jacobian amplitude

p (/;> £ 8 ( 1.2.20 )
ft

(1 2.21 )

The Feynman representation o f the propagator is

( 1.2 .22)

(1.2.23)

The semiclassical approximation then has the following general form
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where n indexes all the classical paths Equations 1.2.21 and 1.2.24 essentially constitute 

the semiclassical path integral quantization.For integrable Hamiltonians further 

simplification using action angle variables has been carried out [92] and it has been 

shown [92] that the EBK quantization rule [3] can also yield the same result confirming 

the exactness o f  the semiclassical path integral quantization.The semiclassical path energy 

Green's function is obtained by applying a Laplace transform to the semiclassical 

Feynman propagator and has been applied [93] to derive the spectral rigidity (A,) 

statistics [58] for an integrable billiard

For chaotic systems with isolated periodic orbits Gutzwiller [94] has computed the 

density of energy states through a different approach.Because in the corresponding 

classical system the particle trajectories are no longer restricted to the invariant tori the 

trace o f the energy Green's function cannot be obtained in an explicit manner. A stationary 

state approximation was employed to express the energy Green's function in terms o f a 

sum over all classical stable and unstable periodic trajectories.The Gutzwiller trace 

formula [11,94] has been successfully applied to compute the energy eigenvalues o f a 

completely chaotic system such as the anisotropic Kepler system.

The experimentally observed spectra [95,96] for the quadratic Zeeman effect on 

a Rydberg state atom have been found to be in good agreement with the theoretical results 

obtained from the trace formula [ll,94].T he photon absorption peaks for Rydberg state 

Hydrogen atoms subject to strong magnetic field has been related by Du and Delos [97] 

with the unstable periodic orbits in the underlying classically chaotic system.The periodic 

orbits in the classical domain for the diamagnetic Hydrogen have been classified by 

Eckhardt and Wintgen [98}.The phenomena o f "quantum scars" observed by Heller [99] 

in numerical studies o f wavefunction evolution has been related to the unstable periodic 

orbits o f the classical analogue using the semiclassical path integral methods [100] thus
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highlighting the role of semiclassical path integral methods in the wavefunction aspect of 

the quantum mechanics as well.

1.2.4 Wavefunctions in nonintegrable and chaotic systems

For a quantum system the complex wavefunction v}/(q,t) defines its state at any 

time completely and uniquely.Therefore it is expected that the symptoms o f chaos will 

be present in the time dependence o f  vj/(q,t) for systems exhibiting chaos in the classical 

domain.Since the eigenfunctions of the related time independent Schrodinger equation for 

any specific energy exhibit analytic behaviour being expandable in a convergent power 

series o f the coordinate, a straightforward signature o f  chaos through the study of 

wavefunctions is not available at present.Due to this problem various approaches have 

been tried out to glean evidence o f nonintegrability and chaos through the wavefunction 

o f  a system.

A. Nodal patterns and scars

As the Hamiltonian operator H is linear and real valued in the absence o f magnetic 

field the eigenfunctions can always be transformed into real valued functions. Accordingly 

Pechukas [101] first proposed that the study o f the wavefunctions might reveal some 

information regarding the integrability o f a quantum system.

For a separable integrable system with n degrees o f freedom there will be n 

families o f roughly parallel (n-1) dimensional nodal surfaces with the quantum numbers 

uniquely defining the numbers o f such nodal surfaces in each family.In the nonintegrable 

regime there exists no quantum numbers so that this nodal pattern is lost with the 

destruction o f nodal lines separating the positive and negative regions producing very 

complicated looping patterns. A thorough investigation [102 ] o f the nodal pattern for a 

certain variant o f the Contopoulos Hamiltonian [103] has been carried out leading to 

classification o f  eigenstates into classes referred to as regular, uncertain and ergodic by 

inspection.Such assignments were then checked out with physical variables like electric
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dipole moment which gave evidence o f chaotic nature o f the system Similar analysis was 

carried out on the stadium, a Hamiltonian system proved [ 104,105J to be strongly chaotic 

by McDonald and Kaufman [55] and calculations were found to show a very impressive 

albeit qualitative picture of the chaotic dynamics o f the system.

To obtain a more detailed picture o f the eigenstates for the stadium, further 

computations with a very large set o f eigenstates were made 1106] revealing certain 

conspicuous intensity patterns displayed by the probability function.These patterns have 

been termed 'scars' [107] and have been shown to be related to the classical domain 

unstable periodic orbits [100],

A related feature of classically chaotic systems is the phenomenon of 

'localization'.It has been observed [ 108] that in a periodically kicked rotator exhibiting 

chaos for irrational period o f kicks .exhibit a certain bounded fluctuation o f energy in time 

whereas the classical analogue shows an increase in energy with time.This has been 

related [109] to the Anderson localization [110] in solid state physics and the effect is 

explained as due to the localization o f  the wavefunction due to interference.

B. Wigner function

The Wigner function [111] provides a quantal analogue to the classical phase 

distribution function o f Boltzmann.lt is defined as
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W(p,q)=— -— [dx e 7* * 1* y ( q + x ) ^ X q - x )  . (1.2.25)
(n * )Nj

If 4>(p) be the Fourier transform of the wave function vj/(q) defined as

4>(p)=(27t n y m f  dNq I|r(9)e ip 'qt* 

where N is the degree of freedom ,then

fd q  W{p,q) = \$(p)\2 

j d p  W(jp,q)-\^(q)\2

So that W (p,q) can be interpreted as a probability distribution in the phase space in that, 

it yields the correct projections into the position and momentum space.Examination of 

W (p,q) in a particular phase plane (p„q,) provides a quantai analogue to the Poincare 

surface o f section [112 ].For regular integrable systems the semiclassical form o f the 

wavefutiction vj/n(q) can be used to evaluate the associated Wigner function.lt has been 

shown [112] that in the classical limit ti -»  0 the Wigner function reduces to the following 

form

(1.2.26)

(1.2.27)

■ (1-2.29)

Therefore the Wigner distribution collapses onto a delta function on the classical invariant 

torus characterized by the action vector Im corresponding to the mth eigenstate.In the 

semiclassical lim it o f finite ti. the projection o f the W igner function Wm(p,q) onto the 

coordinate plane yields the appropriate oscillatory form o f | \|/ni(p,q) I : .The surface of 

section o f the Wigner function for a Henon-Heiles system [30] in a regular integrable
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regime has been studied [113 ].It has been observed that the Wigner function has 

smooth concentric patterns of phase density reflecting the corresponding integrable 

dynamics of the system in classical regime.

For the strongly chaotic systems , an irregular state is associated with a large 

part of the corresponding energy shell.In this situation the Wigner function has the 

suggested form [91,114,115 ] of a microcanonical distribution as follows,

W (p,q)‘ ------- (1 2 3 ())
j d p  JdqS(E-H(p,q ) )

with the surface o f section of W (p,q) for the quantum domain (finite h ) displaying 

behaviour analogous to that of the classically chaotic systems.lt has been pointed out 

[115] that for systems with two or more degrees of freedom |\y(q)|2 vanishes at the 

classical boundaries for chaotic systems displaying what has been termed 'anticaustics’ 

by Berry [115 ], in marked contrast to the caustic structure found for regular 

integrable states.

C. Wave packet dynamics for nonintegrable systems

Since the nearest approximation to the point particlesof classical mechanics are 

the coherent wavepackets [116 ], the dynamics of a quantum system is sought to be 

studied through the time evolution of such wavepackets.For the most general 

wavepackct defined [117] the equation of motion has been derived [118] using 

semiclassical arguments.lt is found that the center of the wavepacket moves along the 

classical path with the packet width depending on the stability of the classical path, 

the width remaining constant for quadratic potentials like the harmonic oscillator 

potential.lt has been shown [119] that the Gaussian wavepackets centered on unstable 

orbits disperses much faster assuming a very complicated tendril like structure around 

the hyperbolic fixed points compared to those wavepackets centered on stable orbits.

The dynamics of wavepacket evolution has been mostly studied through the 

survival probability defined as
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P ( i H t y ( O I ' K 0 ) > | 2
( 1.2 .31)

Numerical computations have shown [ 120,121 ] that for a Hdnon-Heiles system 

[30] there is a significant difference in behaviour of the Survival probability P(t) for 

wavepackets located in the classically chaotic and regular regions of the phase space. 

While for the classically integrable regions the wavepacket exhibits a certain 

recurrence, for nonintegrable regions P(t) decays rapidly and oscillate 

irregularly with small amplitude.Similar investigations have also been carried out by 

Bixon and Jortner [122], Weissman and Jortner [123] revealing more or less similar 

features.Feit and Fleck [124] have used the idea of phase volume and its evolution in 

time has been studied [124] to get an idea about the degree of chaos in the system 

concerned.

Another important technique in understanding chaotic behaviour of quantum 

systems is through the study of the respective quantum fluid dynamics which we 

present in the next section.

1.3 Quantum fluid dynamics

The hydrodynamic interpretation of quantum mechanics was first introduced 

by Madelung [125] soon after the introduction of Schrodinger's wave equation.In this 

formalism the Scrodinger's time dependent wave equation for a single particle is 

transformed into two fluid dynamical equations: an equation of continuity, and an 

Euler type equation of motion.In this formalism the probability density defined by 

|\|/ |2 is interpreted as the charge density , p = |y |2 and the velocity v of this charge 

fluid is obtained from the phase of the complex-valued wavefunction.The introduction 

of the concept o f a fluid with associated density and velocity for studying time 

evolution of a quantum system provides a "classical" approach in describing quantum 

phenomena.

However, it was through the works of Bohm [126,127], de Broglie [128,129] 

and Takabayashi [130,131] that the hydrodynamic interpretation has gained acceptance 

and has seen wide use in different areas of physics and chemistry.
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1.3.1 Basic aspects of quan tum  fluid dynam ics

To obtain the quantum fluid dynamical equations, the time dependent 

single-particle wavefunction is expressed as an ansatz

v(;(r,0 = p 2( r , f ) e x p - - ^ -  (1.3.1)
h

where p = |y |2 = R2 ; R and S being real functions of position and time.Substituting 

this ansatz in the single particle time dependent Schrddinger equation

- J L & y + V x (1.3.2) 
2m dt

and separating the real and imaginary parts ,the two quantum fluid dynamical 

equations are obtained as follows,the continuity equation

4 ^ -+V .(pv)=0 (1.3.3a)
dt

and the equation of motion;

m P ^ =-pV(K+K*u) (1.3.3b)

where

v=— VS (1.3.4a)
m

dv 3v ,
— ==— +(v.V)v (1.3.4b)
dt dt

and
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(I 3.4c)

Like the time dependent Schrodinger wave equation from which they are derived , the fluid 

dynamical equations essentially constitute an initial value problem.Since the Schrodinger 

wavefunction vy is a single valued function o f position, the associated fluid dynamical 

variables R or equivalently p 12 and S need to satisfy certain conditions The single valuedness 

o f \|y requires that R be single-valued as well, while the phase function S is not so 

constrained.In fact due to the polar form of the ansatz equation 1.3.1 used, S can be 

multivalued so that any two S functions differing by an integral multiple of 27th may give 

rise to the same \\i. Alternatively for any circuit along a closed curve C where we have

where n is an integer. A nonzero value o f  n would then imply a discontinuity in the phase 

function. Since \\i is an analytic function differentiable everywhere a discontinuity in S can 

arise only when the closed loop encompasses a node o f the wavefunction where \j/=0.1n a 

nodal region the phase function is not well defined and may undergo a discontinuousjump.lt 

has been pointed out by Wallstrom [132,133] that this condition on the multivalued S 

function has to be introduced properly in the solution o f quantum fluid dynamical equations 

so as to obtain solutions consistent with the wavefunction solution o f the Schrodinger 

equation.In fact it has been shown [132] that unless this condition on S is imposed for 

regions separated by nodes where vj/=0 an infinite number o f  different solutions to the fluid 

dynamical equations may arise.

As seen in equations 1.3.3b, the fluid dynamical equation o f motion contains two 

potential terms, viz.The classical potential V and a quantum potential or the so called 

Bohm potential [126,134] Vqu. So unlike classical hydrodynamics the quantum fluid is 

subjected to an additional potential which is o f purely quantum origin, so that the 

dynamics o f  local fluid dynamical quantities are dependent on this quantum potential

(1.3.5)
c
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[ 135 j However, the global behaviour of physically observable entities o f the quantum 

systems are found to be unaffected by this quantum potential [135], as the expectation 

values of position and momentum coordinates for a particle are dependent only on the 

externally applied classical potential V ln this regard the basic characters o f the 

fundamental fluid dynamical variables, v iz , charge density p and the fluid velocity v 

requires some attention.While tne charge density is a physical observable,the local 

velocity field v cannot be so regarded It has been shown explicitly by Kan and Griffin 

[136] that the current density j=pv being a physical observable the fluid velocity v cannot 

be represented by a linear hermitian operator so that it cannot be a bonafide physical 

observable.

1.3.2 Q uan tum  trajectories and vortices

As discussed, the quantum fluid velocity field v is not a physical observable. 

However, it offers the very significant advantage in carrying over the common classical 

pictures into the quantum domain to "classically" explain certain quantum processes.The 

quantum trajectories [2] introduced in the de Broglie-Bohm causal interpretation of 

quantum mechanics plays a key role.The quantum trajectories are obtained from the 

equation 1.3.4a by solving

(1.3.6)
dt m

to obtain the function r(t).It should be noted that the fluid velocity v=VS/m is related to 

the complex momentum p as

t> =mv ^ V l n p 1/2 . (1.3.7)

and the individual trajectories computed from equation 1.3.6 for different initial positions 

do not represent the actual single particle quantum system.The quantum trajectories have 

been computed by Hirschfelder et al [137] for a Debye-Picht [138,139] wavepacket
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incident on a two dimensional square potential barrier and other [ 140,141J dynamical 

systems As discussed the single-valuedness of the wavefunction \\), implies in the 

Madelung transcription a similar single valuedness on the probability amplitude R and 

a quantization condition on the gradient o f the phase function S.Since the fluid velocity 

is expressed as v=VS/m , then this condition can be expressed as

where n=0,±l,±2.... Using Stoke's theorem this can be related to a surface integral over

the area bounded by C as

where as before n=0,±I,±2,.... But the quantity (Vxv) is the well known hydrodynamical

vorticity co allowing the equation 1.3.9 to be recast as

with the quantization condition ,n=0,±l,±2,....For an area containing a node o f the 

wavefunction vy, n^O implies a nonzero value o f  the vorticity co.Since co satisfies the 

quantization condition as given by equation 1.3.9, the vorticity around wavefunction nodes 

are quantized, as first discovered by Dirac [142,143],Furthermore it has been pointed out 

that [144] since the wavefunction can be generally divided into a real arid an imaginary 

component, a wavefunction node requires that both the components are simultaneously 

equal to zero .

In their study o f a Hydrogen atom colliding with a collinear Hydrogen molecule 

McCullough and Wyatt [145] have reported occurrence o f a vortex in the probability 

current plot, which have been termed by them as "the quantum whirlpool effect" This has

(1.3.8)

(1.3.9)

(1.3.10)
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been further confirmed by studies o f Kuppermann and coworkers [146 J.A detailed study 

o f noda! topology o f wavefunctions giving rise to such vortices has been carried out by 

Reiss [147-150] and Heller et al [151 ]

1.3.3 Wavefunction eigenstates in quantum fluid dynamics

In the conventional quantum mechanics, an eigenstate of a system is obtained from 

the solution o f the corresponding time independent Schrodinger equation.In this case the 

time dependent wavefunction is expressed as

v]i(r,f ) - P1/2( r ) e x p ^ ^  . (1.3.11)
t\.

In the quantum fluid dynamical formalism the stationary state is defined by the 

solution o f the time independent solution of the fluid dynamical equations.In this case the 

fluid density p and v are constant in time.Accordingly the stationary states have been 

defined [152] in terms o f body motion of the quantum fluid. A stationary state where the 

velocity field v=0 is referred to as the static stationary state where the phase function S 

is independent o f  position and can be expressed as S=Ht.While a state with v^O 

corresponds to a dynamic stationary state.In the static stationary state the total energy H 

of the system can be expressed as

W > V ^ E  (13.12a)

so that

V [K +K ,J=0 (1.3.12b)

which means that for static stationary state the resultant force acting on the quantum fluid 

is zero, with the forces o f  classical and quantum potential nullifying each other. This has 

been applied [153] to interpret the stability o f the ground state of the Hydrogen atom.Due 

to the apparent contradiction o f a zero velocity field with the nonzero angular momentum 

of a ground state Hydrogen atom objections have been raised [154,155] against the
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hydrodvnamical approach to quantum mechanics.However, this is resolved by noting that 

following equation (1.3.7) the momentum field mv=VS is only the real component o f the 

linear momentum operator p

1.3.4 Generalization of quantum fluid dynamics

The quantum fluid dynamical equations for a single particle has been extended to 

situations where there is a magnetic field along with the scaler field.lt E and B be the 

electric field and the magnetic field respectively then the fluid dynamical equations have 

been obtained [156] as

^ P +V .(pv)=0 (1.3.13a)
dt

mp — = p (e r£ + -v x tf ) -p V (K + K ) (1.3.13b)
dt c H

where the fluid velocity is expressed as

v = - ( V ,S - - A )  . (1.3.13c)
m c

The spin-magnetic interaction term has been included [151J and the modified fluid 

dynamical interactions have been obtained The electron spin has been incorporated more 

rigorously using the Pauli spin and the relevant equations [131,157,158] have been 

derived, while the quantum fluid dynamical equations for the relativistic case have been 

obtained [159],

As in the case of single particle systems, the Schrodinger equation can be 

transformed into a continuity equation and an Euler-type equation o f motion for many 

particle systems as well.For an N-particle system these equations have the general form
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(1 3.14a)

(1.3.14b)

where i denotes the ith particle of the N-particle system.However, the fluid-dynamical 

quantities like the density and velocity field correspond to a fluid in the 3N dimensional 

configuration space, which do not have direct physical significance for N >l.ln this case 

the interpretation o f the essentially fluid dynamical features like vortices and streamlines 

are no longer germane and the power o f visualization so unique to the single particle 

quantum fluid dynamics appears to be lost Attempts to directly project the fluid dynamical 

equations for such many particle systems onto the 3D Euclidean space have not seen 

much success 1160], except within some approximate single body theories like the Hartree 

and the Hartree-Fock theories.While Takabayashi [130] formulated the quantum fluid 

dynamical equation for a many-particle system using Hartree theory,Wong and coworkers 

[161,162] have applied the time dependent Hartree-Fock theory for the N-body quantum 

fluid system.Using the concept o f natural orbital theory [163],a many-electron system 

subject to electric and magnetic fields has been treated within 3D quantum fluid dynamics

The formulation of density functional theory (DFT) [165,166] for many particle 

systems has been very successful in explaining the electronic structure, bonding and 

properties o f atoms and molecules for time independent situations and for ground states 

in terms o f single-particle density p(r,t) as the fundamental vanable.The essence o f the

ground state o f a many-electron system and the true charge density distribution minimizes 

the related energy functional [165],The density functional theory has been further 

extended to a time dependent situation [167,168],To treat the dynamical problem for many 

electron systems the quantum fluid dynamics (QFD) [169,170] and the time dependent

1164].

density functional theory is that the electron density contains all information about the
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density functional theory (TDDFT) have been combined to obtain the quantum fluid 

density functional theory (QFDFT) [171-179].In the quantum fluid density functional 

theory an N-electron system is mapped onto a system o f N nonmteracting particles 

moving under the influence of an effective potential Vtfl<r,t) to obtain a generalised 

nonlinear Schrodinger equation which is solved to yield the time dependent single 

"orbital" 4>(r,t) for the many electron system considered.The quantum fluid dynamical 

quantities o f this system viz. p(r,t) and the current density j(r,t) or the velocity is 

obtained as

P = |4>|2 (1.3.15a)

j =  pVx (1.3.15b)

where

< K r ,0 -p ,/2exp(/X) • (13.15c)

Recently QFDFT has been successfully applied in solving the ion-atom collision problems 

[173-177] and atom-field interaction problems [178,179],

The quantum fluid dynamics o f nonlinear oscillators have been investigated [ 180- 

182] to study the signatures o f nonintegrability through the hydrodynamic 

formalism.Certain distinctive features characteristic to nonlinear systems have been 

manifested through the various fluid dynamical and related quantities.The nonlinear 

features in processes involving many particle systems such as an ion colliding with a 

many electron atom [183] have been studied using the quantum fluid density functional 

theory in order to understand the associated charge transfer process and related electronic 

structure principles.

1.4 Quantum theory of motion

There are certain aspects o f the conventional interpretation o f quantum mechanics 

which have been open to serious criticism right from its inception. For instance, the
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cor.::eof o f completeness o f wavefunction »}/ m describing the state o f a system has been 

crmcized by Einstein [184-187] To illustrate his ideas further Einstein considered a 

version o f the celebrated cat problem of Schrodinger [188],He felt that the quantum 

theory fails to describe a reality independent o f the act o f observation.

Another very controversial issue for conventional interpretation o f quantum 

mechanics has been the problem of measurement in the quantum domain. Since unlike 

measurement as perceived in classical physics, in quantum mechanics the experimental 

apparatus plays an interactive and intrusive role it is very difficult to talk about a quantum 

system separated from the experimental equipments. This arises partly due to the specific 

properties o f the Schrodinger equation, especially its linearity which generates irreducible 

couplings between objects observed and the apparatus. As these interactions transform the 

observed system the ideas o f observable and measurement have been strongly criticized 

[189], Furthermore conventional quantum mechanics fails to explain the assignment of 

particular eigenvalues to an observed state entailed by the act o f observation. To explain 

this von Neumann [190] proposed his theory o f measurement o f quantum mechanical 

state, where Schrodinger's evolution equation no longer holds and what actually occurs 

in nature is proposed by the hypothesis o f wavefunction collapse. In this hypothesis it is 

proposed that a quantum mechanical state collapses to the observed value due to the 

intervention o f the observer. A detailed discussion may be obtained in articles by Wigner 

[191,192] and Redhead 1193] among others.

Even if the collapse o f the system wavefunction can be accounted for by a suitable 

modification o f Schrodinger's wave equation, the definite observed state so obtained will 

be a wavefunction and the assignment o f definite variables to the indicator o f the 

measuring device goes beyond conventional quantum mechanics. If it is argued that 

classical objects can always be defined by classical variables (regardless o f its coupling 

with a observed quantum state) then the impossibility o f strictly defining the micro and 

macro levels necessitates assignment o f such variables to quantum (micro) level as well. 

This is the basic tenet of de Broglie-Bohm theory [194-204],
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1.4.1 Basic concept of causal theory of de Broglie and Bohm.

Counter to the conventional quantum mechanics, de Broglie [195-199] introduced 

the idea that the wavefunction should instead o f replacing the concept ot material point 

be in coexistence with the point particle thus extending the classical concepts into 

quantum domain. It was suggested that in the nonrelativistic situation the Schrodmger 

wavefunction can be associated with an ensemble of identical particles dittering in 

positions and distributed according to the conventional interpretation o f K | /   ̂ proposed by 

Bom.Essentially de Broglie assigned a dual role to be played by the Schrodinger 

wavefunction \\i in that along with the conventional interpretation regarding likely location 

o f a particle it also influences causally the trajectory of the ensemble elements. The wave 

function i\j is now considered to behave as pilot-wave guiding ensemble element.de 

Broglie applied the guidance principle to compute the orbits for Hydrogen atom 

stationary states [128.134J.

In principle de Broglie's approach is closer to Einstein's view regarding the 

conventional Copenhagen interpretation o f quantum mechanics. Einstein's interpretation 

advocated Bom's statistical state in the sense that vji refers to an ensemble o f systems and 

not a single physical system. In this view vy is considered as an incomplete representation 

o f actual physical state and plays a role similar to that o f the distribution function in 

classical statistical mechanics.Einstein's interpretation has been developed into the 

statistical approach to quantum mechanics [205,206] but does not seem to offer any 

greater insight into the nature o f quantum phenomena as compared to the conventional 

Copenhagen view It is regarding the role o f the wavefunction y  that the de Broglie 

approach stands out as in this view the wavefunction becomes a physical entity associated 

with individual ensemble element.

de Broglie's causal interpretation was further developed by Bohm [200,201] who 

set up a consistent counterexample to prove that the assumption o f completeness o f the 

wavefunction in describing a physical system was not a logical necessity.

1.4.2 Mathematical formulation

As already discussed the fundamental concept o f  the de Broglie«Bohm theory is
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the idea of an ensemble o f systems each of which evolve under the influence oi the 

wavefunction vj/ obeying Schrodinger’s wave equation.Furthermore it is postulated that the 

quantity I v|/1 :d r  now gives probability of an ensemble element to lie in the region of 

space between r  and r+dr.

The concept o f ensemble of particles (elements) allows us to introduce the idea 

o f  individual dynamics of these elements using the following line of reasoning.The time 

dependent Schrodinger wave equation is written as

= 0-4. I )
dt 2m

where m is the mass of the particle and V= V(r,t) is the potential energy due to an 

externally applied classical field. I'he following polar form of the wavefunction is 

substituted in the Schrodinger wave equation

i|r(r,f)=/?exp(j'S/fi) ( 1.4.2)

where R(r,t) and S(r,t) are the two real valued functions representing the amplitude and 

phase factors o f the wavefunction respectively.Then equating real and imaginary parts of 

the eqn. 1.4.1 the following field equations are obtained,

dS+— ( y s j 1- — —  + F - 0  (1-4.3)
dt 2m 2m R

3R2 -+V.
dt \ m

=o . f - 4 -4 )

with the condition o f single-valuedness o f ij/ requiring that R(r,t) be single-valued and the 

phase function S obey the condition
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£ d S  j v S .d r  nh (1-4.5)

where n is an integer.lt is then seen that eqn. 1 4.3 has the form o f the classical Hamilton- 

Jacobi equation apart from the term

v  —  . (1.4.6)
qu 2m R

The function Vqu(r,t) is referred to as the quantum potential discussed in the previous 

section.The eqn. 1.4.4 then expresses the conservation o f the probability current.Eq. 1.4.3 

finally takes the following form

— +— (V,S)2 + K +K = 0 . (1-4.7)
dt 2m qu

Then following arguments along the line of classical mechanics a vector field v=VS/m 

can be constructed and it is assumed that the field defines at each point of space the 

tangent to a possible particle trajectory through that point. Thus the concept o f an 

ensemble o f particle arises quite naturally and the trajectories are orthogonal to the 

surface S=constant and is obtained from the equation o f  motion

r = v (r ,0 |r__r(f)
1 , (1.4.8)

= ^ V S (r ,O U Kf)

where the initial particle position r(0)= rn has to be specified. It is further seen that the 

velocity field v(r,t) is related to the probability current density defined as

2 mi
- (x̂ r * Vi r̂*) (1.4.9)

and we have
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a form already introduced in the last section. Hence the trajectories r(t) can be identified 

with the direction o f flow o f the probability current density. Since VS is a single valued 

function of position there exists a unique tangent vector associated with VS and 

consequently there can be a single trajectory through a space point, which signifies that 

trajectories of the ensemble elements do not intersect one another.

I he set o f equations from 1.4.6 to 1.4.10 may be considered to form the 

mathematical basis of the de Broglie-Bohm causal interpretation o f quantum mechanics 

hereafter referred to as the quantum theory o f motion.

1.4.3 Classical limit of the causal theory

For an appreciation o f the causal quantum theoretic approach to the classical limit, 

a brief discussion regarding classical limit version o f conventional quantum mechanics is 

in order In conventional quantum mechanics one o f the most widely used criteria for the 

classical limit is the condition t l—>0 when compared to with quantities o f the same 

dimension pertinent to the system under consideration. Even there the Schrodinger 

wavefunction has to satisfy equations containing tv and may contain tl parameters. The 

fundamental problem here is the concept o f quantum state \\i which after all does not have 

a classical analogue. The common procedure of identifying the classical limit through 

such aspects o f quantum mechanics as energy levels and large quantum numbers may not 

be correct in the sense that the underlying process remains in the quantum domain without 

any classical law o f motion being manifested. Similar arguments may be raised in case 

o f identifying classical like behaviour of quantum systems as the classical limit behaviour 

o f the system.

The quantum theory o f motion, however, seems to be free from the ambiguity 

inherent in classical limit studies of conventional quantum mechanics. Since it starts with 

a definition o f quantum state that admits an objective physical system like a point particle 

with definite position, along with the Schrodinger wave function, one can always look for

J ( r , 0 - / ? 2| - ~ j - * 2v ( r , 0  , ( 1 4 1 °)
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etii'iie"' that approach the classical limit In this approach classical dynamics theory or 

at least the classical limit is sought to be deduced from the causal theory [207,208].

In the quantum theory o f motion the classical domain is considered to he the state 

where the wave component o f matter exerts no influence on the particle behaviour [2], 

Mathematically this is implied by the condition Vqu->0 in eqn.( 1.4.9) so that the Hamilton- 

Jacobi equation in its classical form is recovered along with the continuity equation as

Under such conditions the classical limit o f the quantum mechanical one-body pure state 

problem is a particular classical statistical mechanics o f a single body in the Hamilton- 

Jacobi formalism [2],

1.4.4 Application of quantum theory of motion

The mathematical formulation o f the quantum theory o f motion effectively draws 

from the Schrodinger's equation and as such all the experimentally observed facts 

supporting the conventional formulation is reproduced in the quantum theory o f  motion 

It is, however, in the possibility o f identifying causal agents o f the observed effects that 

the quantum theory o f motion has met with great success.

The historically important matter wave interference effects [29]were studied 

experimentally for electrons [209-211] and neutrons [212], Alt the cases confirm the 

predictions o f quantum mechanics. Such observations have been theoretically interpreted 

by Philippidis et al [213,214] who computed the quantum trajectories o f  individual 

ensemble elements for the double slit interferometer. A causal version o f the neutron 

interferometer [212] has been investigated [215] where the interferometer mirrors have 

been represented by square potential barriers and the neutron beam is represented by a 

Gaussian distribution o f the initial particle (ensemble element) positions.The penetration

(1.4.11)

(1.4.12)

42

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r



and scattering phenomena for different potentials have also been studied m causal 

interpretation 1216,217] and the various experimentally observed effects have been 

explained in terms o f the quantum theory of motion

The Aharonov-Bohm effect [218] is supposed to imply [39] that the role played 

by the potentials in quantum mechanics transcends their role in classical mechanics, lhe 

issues raised in this regard [219] are still to be resolved completely.

A consistent causal interpretation of this phenomenon has been obtained 1214] by 

the local action o f the vector potential A on the particle by means ot the force derived 

from the quantum potential.

Recently the causal interpretation has seen applications in development o f useful 

concepts where the conventional quantum mechanical predictions are not clearly defined. 

One such area o f confusion is the concept of time in conventional quantum mechanics. 

This difficulty in defining time spent by a particle to traverse a certain region is 

highlighted in the case o f a particle tunneling through a potential barrier. Various 

definitions o f 'mean times' involving expressions derived from the Schrodinger 

wavefunction has been proposed [220], From the causal interpretation point o f  view, the 

fundamental difficulty in obtaining a general definition through the wavefunction concept 

alone ,lics with the fact that there is no feature in the conventional theory that relates to 

the individual tunneling process. The causal interpretation introducing the concept of 

particle (ensemble element) trajectory is, however, equipped with handling this problem. 

Various investigators [221-224] have applied the quantum theory o f motion (de Broglie- 

Bohm theory) to provide clear definition o f transit time in different physical situations.

The introduction of trajectory concepts and the associated deterministic evolution 

o f the ensemble elements have provided a new avenue to study chaos in quantum 

systems.Very recently the Lyapunov exponent and Kolmogorov-Sinai entropy have been 

generalised to treat quantum systems through the quantum theory o f motion.Such generic 

cases as the kicked rotor and the quantum Weigert map for a charge localized in a unit 

square has been successfully treated [225,226], Parmenter et al [227] have claimed to 

have found certain class o f systems which exhibit deterministic chaos in the quantum 

domain as per the causal approach but behaves regularly in the classical domain.Sengupta
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and Chanaraj [228] have studied the quantum Henon-Heiles oscillator by applying the 

quantum  theory o f  motion and has extended their studies into a general class o f 

anssotropic oscillators [229a] and the Rydberg atom [229b].The results obtained point to 

a very' close relation between determ inistic chaos in classical and quantum  regimes 

when studied using the causal approach.

1.5 Motivation for the present w ork and the contents o f  the thesis

The quantum  fluid dynam ics and the quantum  theory o f  m otion offer a unique 

opportunity o f  investigating the problem  o f chaos in quantum  systems from a ’classical' 

view point.The hydrodynam ical equations provide us with the classical concepts of 

velocity field .vorticity and charge flow  for both single particle systems as well as for 

many particle system s (com bined with density functional theory) and the equations are 

nonlinear.

The conventional quantum m echanics cannot treat chaos in the same footing as the 

classical chaos since the concepts o f  individual trajectories is not present in the quantum 

domain. As is obvious from previous discussions , chaos in the quantum domain is treated 

indirectly through the study o f  mean value o f  quantum  operators and spectral structure o f 

energy eigenvalues.D efining a quantum  analogue o f  the sensitive dependence on initial 

conditions and m easure o f  irregularity in a quantum  system remains a problem  [230].

However, the quantum  theory o f  m otion allows a sim ultaneous existence o f 

particles and w aves so that one can assign trajectories to quantum particles.In that case, 

all the concepts used for studying classical chaos like the sensitive dependence on initial 

conditions, entropies etc. can be applied to quantum  system s that exhibit chaos in the 

classical domain.

Chapter 1 is now concluded by providing an outline o f  the contents o f  the 

thesis.The thesis consists o f  seven chapters.C hapter 1 review s various studies on quantum 

domain dynam ics o f  classical nonlinear system s exhibiting chaos.The quantum  fluid 

dynamics and the quantum theory o f  m otion are introduced and the m otivation for the 

present work is explained.Chapter 2 discusses the quantum  fluid dynamical studies on a 

Henon-Heiles oscillator.In Chapter 3 the quantum  dom ain behaviour o f  a H enon-Heiles
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osctllaio; is studied in terms o f  the quantum theory o f  motion.In Chapter 4 we investigate 

the chaotic dynamics o f  some quantum anharmontc oscillators using the quantum  theory 

o f  m otion. Application o f  the quantum theory o f  motion in understanding the dynam ics o f 

an electronically excited Hydrogen atom in presence o f  an intense electric field constitutes 

the subject m atter o f  Chapter 5.Chapter 6 deals with the causal interpretation o f  the 

quantum  dynamics o f a Rydberg atom colliding with a proton.Chapter 7 highlights the 

dynamical variants o f  some electronic structure principles within a quantum fluid density 

functional framework.This Chapter attempts to broaden the scope o f  quantum  fluid 

dynam ics in tackling quantum dynamics o f m any-particle systems.W e conclude with the 

bibliography containing all the references followed by a brief summary o f  the present 

work

45

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r


	QUANTUM THEORY OF MOTION AND QUANTUM FLUID DYNAMICS OF NONLINEAR DYNAMICAL SYSTEMS

	DOCTOR OF PHILOSOPHY

	ACKNOWLEDGEMENTS

	Santanu Sengupta

	(TKRlCliLl M VI TAE

	Indian Institute of Technology, Kharagpur, India Title of Thesis Quantum Theory of Motion and Quantum Fluid Dynamics of Nonlinear Dynamical Systems

	Bachelor of Science

	Higher Secondary Examination 11012)

	Secondary’ Examination

	Preface

	Contents

	Chapter 1


	P=-vjn<ps

	4=VpH(p,q)

	lf„fj)=Q	iJ = l,....N	(112)

	U{PXJ>2^7>=E	O-1-9)

	P2=P2<Pv(hA2’E) •	(1.110)


	(z(OU(T)...^(»T))

	z„r-tz.	<"'5,

	l®i I ^ l®21 l°*l

	—	In | af | .

	Pp(s)=±cxp-W	(1.2.11)



	=1/2 (p? vt) ♦ Vt(x,) * VM +	(1 2 12)

	H-P--—(x2+y2+2z~)	(1.2.13)



	H=Sl-U-i(x2+y2+fsV)	(12 14)

	iy

	* n E~En

	(1 2.21)

	(1.2.22)


	W(p,q)=—-—[dx e7**1* y(q+x)^Xq-x) .	(1.2.25)

	W(p,q)‘			(123())

	jdp JdqS(E-H(p,q))

	(1.3.5)

	t> =mv ^Vlnp1/2 .

	t\.

	dt	c	H

	m c

	=	0-4.I)

	dt 2m

	i|r(r,f)=/?exp(j'S/fi)	(1.4.2)


	dt 2m 2m R





	v	— .	(1.4.6)

	r=v(r,0|r__r(f)

	= ^VS(r,OUKf)

	2 mi

	1.5	Motivation for the present work and the contents of the thesis

	2.1.	Introduction


	^ (r >0=P l/2exp[*x(r,0]

	dp/dr+V.(pv)=0

	pdv/dt=-pV(V+Vqu) .

	[-1/2V2+K]i]/-i3i|r/3f	(21)


	ap/3f+V.(pv)=0	(2.3a)

	dR/dt=-o.5RV2x-VR-Vx ;tf=p1/2	(24a)




	Vcj<xct) =~(*2+.y2)+M*2y~(i/3);y3)	(2.4c)

	2.3.	Numerical solution of QFD equations

	arlfAt

	-[drJdy]n.[dR/dy]n



	[s*/a*r=ix?.ij-x;.ijVC2Ajc)	<2 "a>


	mayr‘ii$.,-i$i .,vt2Aj>)	<21lc>

	t#x/ay2r=[Xv.t-2xunv-.l/(A>)2	<2lle)

	c,=-l/2Ajc[3x/ar]"	(2.14c)


	drXvll*t+V&^*l^&Wto2]H*l+[&Wdy2y,*l\

	+l\[d7ddyr\[dxJdyrl-[d]Jdxr\[dridxr1}

	bj=l/2Ay[dx/dyr2	(218b)

	-[l^xldxT^l^x/dy2]

	^ 2Rn:



	-[dxJdyrMdRJdyr1

	o

	Cu



	o

	a

	o

	Chapter 3

	3.1	Introduction

	(3.1)


	rJ_VS(r,0U

	m

	V (r,i)=-~VRIR ?"v 2m

	d d

	/»=£ A . A>0	<3,6>


	X>('W"-T^T	(3'l7>

	o




		• . •• •: .:.r*.

	. •• .••. .-' i y..,^-.: •

	O

	3.4	Summary


	Chapter 4

	4.1	Introduction

	2 J

	n



	wo<p,,«ypyj.w <J5>

	D(0)-o t lD(0)J

	Pw(S)-^exp<^) ,	(.ill)

	P|,(s)=exp(-jy) ,

	^.expC-iHAOM^) >	(4 I3)


	(r)112

	^(x,y;t=0)=— exp

	. VS(r,t) p, m


	r°

	I- o -o o

	o

	I

	.q

	-rrj

	o	o	o o	£_	in	o'

	o	£	in	o


	Chapter 5

	Quantum theory of motion for 3 Rydbcrg atom in an intense electric field .

	5.1	Introduction




	[-l!v2+7(r)]iKr,*Hfi3'W&	(5 !)

	2m

	ijr(r,f) =R(r,f)cxp[iS(r,t)IH] .	(<1-)

	P(r>*MK(r,0]2 ,

	v=—VS(r^) .	(54C) n

	polarizability [183] dynamics in a chemical reaction.

	m







	m -fa® -^(o)2+w) -3'2(0)i+(px(<) -p^(0)2+(p,,(o -py^))1 {5lla)

	H=H A. A>0

	z

	o

	rrr-rrr

	Quantum theory of motion for a Rydbcrg atom colliding with a proton


	m,lci--(y1l2fY^V	(61)

	, (6.2) (d'di+r(t).V)r(t) = -V( V +K B) Wll

	4'(jvW<(r./)exp(/x('V)	(6'3)

	R(t)Hh	(6 8 a)



	f(/mO)-y],	(6.8.b)

	Quantum fluid density functional theory of charge transfer during

	atomic collisions

	7.1	Introduction


	[1].


	x=-n=-


	2039

	7.2	Theoretical background

	[-—V2+V ^(r)] 4>(r,/) =/^-

	|R,t| iRjfl 5p

	2[ p(r,/) 8p 6p

	nsn(r)=jA',/)n('v,V',/ -	(7.15)

	a(0 =!/.)„;>) |/k.(/)| ,

	d

	7.5	Summary



	Bibliography


	Summary

	Quantum fluid dynamics of a classically chaotic oscillator

	!l=\{pl +p) + rc,(.v,y) ,	(1)


	Kifv, f) = J(.vJ+y:)+A(.v*>- \y}), 1 , (2)

	i	w + »'.i(*r) •	(3)

	Quanium manifestation of classical chaos in Hcnon-Ho







	«ml m'n-lnlcfcrobilliy, Tlmr 		on of Sh.„0„ cntrop,. dcm.lv .lid

	tional //Lo. xl is given by i/l„ *1-1 2 Jp(Vx!;dr + 1 S fVp'ACr,

	Quantum chaos in Rydberg atoms: A quantum potential approach

	P. K. Chattaraj and S. Sengupta



	<P

	PHYSICS LETTERS A		

	™,. -7U . <t u^czti^ ffcry J	^	j

	p. a. iLilu






