
ABSTRACT

Numerical investigations on the effects of natural convection induced due to 

temperature and concentration gradients during melting and solidification o f pure metals 

and binary alloys have been carried out.

The fixed grid cnthalpy-porosity method has been adopted for modeling phase changc of 

pure metals. The coupled differential equations arc discretized using the control volume based 

finite difference scheme. SIMPLER algorithm Is adopted for solution of the flow field. The 

energy equation is iterated during an overall iteration loop, to first obtain a convergence in the 

nodai liquid fraction value which proved to be time efficient The capability o f the cnthalpy- 

porosity method is dem onstrated by solving melting and solidification problems. The 

cnthalpy-porosity formulation has been adopted to study the effects of liquid superheat and 

solid subcooling during solidification and melting of pure metals.

Studies on solidification of binary alloys arc based on the continuum model. The 

strongly coupled elliptic partial differential equations have been solved using the finite 

difference control volume approach with SIM PLER algorithm. The model is validated by 

comparison with the available numerical and experimental results for NH.(C L -H 20  binary 

system available in the literature.

'Hie continuum formulation has also been employed to study therm osolutal convection 

and macrosegregation during solidification of hypereutectic and hypocutectic NH 4C L -H ?0  

binary system in trapezoidal side chilled ingots. M agnetic field effects have been included 

in the continuum formulation to investigate the influence of m agnetic field strength and 

direction during solidification of a binary metal alloy (Pb-Sn) in a statically cast 

rectangular ingot. In an attem pt to account for the solid m otion and anisotropic 

permeability behavior during solidification of binary metal alloys within the fram ew ork of 

the continuum formulation, a porous-viscous model hits been developed which treats the 

mushy zone as a porous medium or a viscous fluid with an effective viscosity depending 

on a critical solid fraction.
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