Chapter 1

Introduction

Validation dominates the design cycle time for large digital integrated circuits [77].
The volume of time and resources that are typically dedicated towards design
validation has grown with the increasing size and complexity of designs [96], and
yet it has become increasingly hard to arrive at a satisfactory verification closure.
Of particularly annoying nature are the bugs that are detected late in the design
cycle, since they are hard to fix and even harder to verify that the fix actually
covers all related bug scenarios [62]. This thesis aims to study some of these
verification problems.

Large digital integrated circuits typically consist of several functional blocks
(components) and a non-trivial amount of glue logic which stitches the components
together through well defined control and data paths. The glue logic implements
the architectural specification of the design using (and often reusing) the core
functional units of the design. It is therefore not surprising that a non-trivial
fraction of the late bugs are found in the glue logic, and most of these bugs
arise out of incorrect interpretation or implementation of the micro-architectural
specifications [40]. When such bugs are found late in the design flow, the designer
has to fix the bug and then verify that the bug fix is correct and complete.

Quite often, the bug fixes are local in nature, that is, the part of the design
which is modified, is of modest size and is contained within a small structural
boundary [62]. However, the cone of influence of this patch can be significantly
larger and in many cases may touch the entire architecture. The size (and com-
plexity) of this cone makes the problem of verifying the correctness of the fix one
of the most challenging tasks in design verification. The focus of this thesis is on
verification problems of this nature.

Traditional approaches for verifying the correctness of late bug fixes in the
glue logic rely on simulation coverage of the scenario that exposed the bug and
possibly related scenarios. Unfortunately, at this level of integration it is very
hard to determine and cover all possible scenarios that may expose the same bug

(or a similar one) through simulation. Consequently it is not entirely uncommon



2 1. Introduction

in industrial practice that the bug fix does not cover all the scenarios and a very
similar bug is uncovered again in the future.

With the increased adoption of assertions (formal properties) by the digital
chip design industry, it has become a part of recommended practice to add an as-
sertion to capture the intended behavior when a bug that misrepresents the intent
is found. Our challenge can therefore be articulated in terms of two verification
problems, namely (a) to verify that the design, after the (local) changes, satisfies
the new assertion under all possible scenarios, and (b) to verify that the change
does not affect the functionality of those portions of the design where no change
is intended. This thesis proposes to use several novel techniques in conjunction
with formal property verification for addressing the first verification problem from
a practical industrial perspective, and novel methods for sequential equivalence

checking for addressing the second verification problem.

1.1. Motivation and Objectives

The problem addressed in this thesis can be articulated with the help of Figure 1.1.
B represents the fragment of logic that has been modified to fix the bug. Zgz
and Op represent the inputs/outputs into/from B respectively. The property, P,
represents the intended local behavior, which has been added after the bug was
found. Our goal is to prove that B satisfies P under all possible scenarios that
may be created by the glue logic, D. The main challenge in this problem is to
determine which scenarios can be created by D, and verify whether B satisfies P

in each of them.

FU, || FUy |eerriernrenns FU,

Bug Fix

Figure 1.1: Problem scenario

It is typically infeasible in industrial practice to verify P on D using formal
verification techniques [70] due to the enormous size of the glue logic, D. On
the other hand, formal methods can be used to verify P on B (which is much

smaller). If B satisfies P, then obviously D satisfies P as well, but the reverse



1.1. Motivation and Objectives 3

is not necessarily true. It is possible that none of the scenarios under which B
refutes P can be created by D. In other words, factoring in the influence of the
entire glue logic on the verification of P on B is our main challenge.

There is a significant volume of literature on incremental verification of digital
designs. In |78, 142, 143, 147, 148], the problem of incremental verification of
hardware designs is viewed as an instance of dynamic graph algorithms. In these
works, the design is represented as a graph and changes to the design are viewed
as edge insertions or deletions. After each such graph update, the problem is
to check whether properties which previously held on this graph, still hold and
therefore this can be viewed as a problem of reachability analysis on dynamic
graphs. However dynamic graph connectivity is an open problem with known
scalability limitations [67]. An incremental and complete bounded model checking
algorithm has been proposed in [95] using incremental satisfiability solving. But
our experience shows that bounded model checking does not scale to the designs
we focus on. Recently, Bradley et al. have proposed the ic3 model checker, which is
an incremental, inductive model checker [46, 49|, using the incremental generation
of stepwise-relative inductive clauses. It seems to be a promising new direction in
symbolic model checking and is amenable to incremental analysis. In [67], Chockler
et al. have used the same ic3 model checking algorithm to propose an incremental
verification algorithm that stores information from previous verification runs and
reuses it, in case of both positive and negative verification results. However these
methods are applicable when a property is formally proven on the original design,
whereas in our problem the property P is added after the bug is found and model

checking P on D does not scale.

Combining formal and simulation techniques to achieve a more complete verifi-
cation of a system [43] has attracted a lot of attention. In [98], a tool Ketchum has
been proposed which combines simulation and formal-based techniques to achieve
better verification through automatic test generation and reachability analysis.
In [157], algorithms which combine simulation with symbolic methods for the ver-
ification of invariants are proposed. In [94]|, methodologies have been presented
to relate simulation and formal property verification techniques more formally to
achieve a potentially better strategy for cohesive coverage management in verifi-
cation.

Intuitively it may appear that counterexample guided abstraction refinement
approaches [75, 110] are useful for our problem. These methods start with a
small cone of state variables and progressively expand the cone by including state
variables needed to eliminate false counterexamples. The task of determining
whether a counterexample is real/false typically works well when the property is

defined on the boundary of the entire logic, because the counterexample defines the



4 1. Introduction

inputs to be driven to test whether the counterexample is reproduced in simulation.
On the other hand, in our problem, the counterexample is defined on the signals
of B, and there is no obvious way of determining whether it is real in the entire
glue logic D.

The motivation of this thesis is to leverage formal methods to aid the existing
manual approaches for verifying bug fixes. Instead of attempting to use formal
methods as a singular technology for the verification problem described above,
this thesis aims to use formal methods to improve coverage of relevant behaviors
and restrict the attention of the verification engineer to those behaviors that are
relevant for the property. Specifically this thesis addresses the following broad

objectives:

1. Traditionally, after a bug fix, the verification engineer simulates the design
with the same test-bench that was used to expose the bug. Formally, this
test-bench executes one control path of the design under a specific assign-
ment to the data variables. The bug may resurface on the same control path
for a different valuation of the data variables, or it may resurface on a differ-
ent control path altogether. The objective of this thesis is to classify these
possibilities formally and then leverage the given test-bench to determine
which of these are possible. If the bug fix is not robust, that is, it cannot be
proven formally using local information, then the objective is to make the

verification engineer aware of the gaps in the verification.

2. Attempting to prove P on B is always a recommended step since its success
achieves verification closure for P. On the other hand, when B refutes P,
then the model checker (that is, the formal verification tool) may return ficti-
tious counterexamples. If a real bug persists, then the real counterexamples
may not be easily distinguishable from the numerous false counterexamples.
It is not feasible in industrial practice for the verification engineer to examine
all counterexamples and determine their correctness. The objective of this
thesis is to extract knowledge from the large volume of existing simulation
data (including those for individual components) to filter out the counterex-
amples that have very little support from simulation data, and then use the
knowledge extracted to rank the counterexamples in terms of their likelihood

of being real.

3. A bug fix can often lead to side-effects, that is, it can inadvertently affect
parts of the design where no change was intended. It is therefore necessary
to prove that those signals that are supposed to remain the same indeed

preserve their functionality in the modified design. Since the bug fix is local



1.2. Summary of Contributions 5

in nature, it does not affect the local invariants of the other components
within the glue logic. One objective of this thesis is to leverage the local
invariants of these other components to prove sequential equivalence between

a signal in the original design and the same signal in the modified design.

For each of these problems, our goal is to provide the verification engineer with
analytical aids for increasing his/her confidence on the verification of the bug fix.
We believe that this is a genuine requirement in practice considering the absence

of any stand-alone formal method for this problem.

1.2. Summary of Contributions

This thesis presents the findings of our research on developing methodologies for
aiding verification of local design changes in industrial-size digital integrated cir-
cuits and demonstration of the effectiveness of our methodologies on various test

cases. This section presents a summary of the major contributions.

1.2.1. Trace Assisted Formal Methods for the Verification of
Bug Fixes

When a bug is uncovered in the design late in the design cycle, the design engineers
fix the bug and simulate the modified design with the same test-bench that exposed
the bug, to determine whether the given bug is now eliminated. But this does not
guarantee that the bug cannot resurface through similar but slightly different
scenarios. In this part of the thesis, we define a family of related bugs, given a
bug manifestation, by identifying a minimal dynamic causal slice that affects the
property P. We analyze the logic flow inferred by this dynamic causal slice with
respect to the conditions required to satisfy P. Using this analysis, given a fix
for the bug, we provide a categorization of the bug fix, whereby we guarantee the
complete elimination of the bug in case it is a robust fix and in other cases, provide
a report of other counterexamples or the gaps in coverage of this verification run,

as appropriate. Specifically the problem we address is as follows:

Definition 1.1. [Problem Statement]:

Given:
1. D: The RTL implementation of the original glue logic.
2. B: A module contained within D.
3. P: A property over the signals at the boundary of B.

4. B': The modified version of module B.



6 1. Introduction

5. D': The version of D containing B’ instead of B.
6. TB: The test-bench driving D which demonstrated the bug.
Goal:

e To determine whether the modification of B to B' corrected the bug scenario.

COl and Dynamic

Assertion Checker

DUT
RTL Simulator +
Test-bench

N

(——_—( Bug Patch
Formal Analyzer

Counter-
examples

Statement Dump

7

Causal Trace Constructor Causal Trace

Figure 1.2: Overall methodology Flow

The original design had B inside D. Since 7B was used to demonstrate the bug,
and P was added in hindsight, it follows that the simulation trace obtained by
driving D with 7 B refutes P. When B is replaced with B’ to patch the bug, it is
normal practice to simulate D’ with 7B again and check that the trace satisfies P.
We propose to extend this step with some additional formal methods inspired by
software verification and debugging to analyze the new trace and check whether
the proof of P on similar scenarios follows from it.

The broad steps in the proposed approach are as follows (see Figure 1.2):

1. We simulate D', which is the modified glue logic containing the bug fix, using
TB and dump the set of statements S, which causally affect a non-vacuous

satisfaction of P.

2. We construct a dynamic causal slice C from S to isolate all statements which
affect the success of P through data or conditional control dependencies. We

call this slice the causal trace.

3. While traversing the execution trace during dynamic slicing, we also compute
the unrestricted weakest precondition (WP) Q along the slice. The weakest

pre-condition is only computed for the statements which are in the dynamic



1.2. Summary of Contributions 7

slice. It terminates when the slicing terminates. The WP thus computed is

the logic inferred by the execution flow obtained in simulation.

4. Based on the WP, we categorize the bug fix into one of the following three

types and accordingly provide the following information:

(a) Type-1 Fiz: This is the kind of fix for which the bug cannot resurface
either on another control flow or with different data inputs on the same
control flow. This can be intuitively explained as follows. In the same
scenario, in any run, the same set of statements will be executed. These
statements may have some branch conditions whose values are deter-
mined from previous statements that are not causally determined from
the values dumped during this window. If the fix ensures that there
are no such branch conditions, then we have truly covered the scenario
and the fix is robust. We can thus provide a guarantee in this case that

the bug is completely eliminated in this scenario.

(b) Type-2 Fiz: This is the kind of fix for which the bug cannot resur-
face with differing data input valuations on the same control path as
simulated by the given test-bench, but might resurface through some
alternative control flow of the RTL code. We guarantee that the bug
cannot, resurface with differing data input valuations on the same con-
trol path as simulated by the given test-bench and additionally report
the control points (conditional expressions) in the slice, which are par-
tially covered and exactly which part of each control point is covered

by this verification run.

(c) Type-3 Fiz: This is the kind of bug fix where the bug can resurface on
the same control flow for differing valuation of data inputs. Given such

a fix, we report another counterexample of P.

We provide experimental evidence to demonstrate that the complexity of ver-
ifying a bug fix with respect to the given bug scenario is orders of magnitude less
than attempting to prove P on D’. We demonstrate this on the snoopy Cache Co-
herence protocol of Pentium Pro (P6), an implementation of which can be found
in the “p6bus” example in the Texas 97 benchmark suite [35]. We also demonstrate
the effectiveness of our methodology on the L2 cache control logic of the industrial-
size open-source OpenSPARC T1 processor [18]. Bounded model checking of P
does not scale on the L2 cache of OpenSPARC due to capacity limitations. But
given a bug manifestation and a bug fix for the same logic, we are able to perform
the aforementioned formal analysis in around 5 hours of time, and with reasonable

amount of memory.



8 1. Introduction

1.2.2. Formal Methods for Ranking Counterexamples

For bug fixes that are not robust (as outlined in Section 1.2.1), we must determine
whether P holds on D, as shown in Figure 1.1. Since B is small, it is feasible
to formally verify P on B in isolation, that is, under the assumption that the
inputs to B are unconstrained. If P holds on B in isolation, then P also holds on
D, however the reverse is not true. For example, a counterexample generated by
model checking P on B in isolation may not exist in D, that is, D may not be able to
create the scenario depicted by the counterexample on the interface of B. Typically
the spurious counterexamples are numerous and often exceed the number of real
counterexamples, if any. It is practically infeasible for the designer to manually
examine each counterexample and determine whether it is real or spurious within
the large glue logic D. Formally verifying whether a counterexample over B is
real in D is infeasible in practice due to the size of D and the fact that the

counterexample is defined over signals which are not on the interface of D.

' : b -
: — 8 :
Model-Check P on B Yes
Invariant Miner LA
under assumption A
No
. Mined E * Counterexample E Rank
E Assumption Set | E C ' Counterexamples

Belief_ Find A . @
Computation

Compute 7¢ Add Ac to A

Figure 1.3: Counterexample ranking tool flow

In this part of the research, we present a method for ranking the counterex-
amples obtained from model checking P on B, using knowledge mined from the
large volume of existing simulation dumps on D. The expectation of the proposed
approach is that higher ranked counterexamples are more likely to be real than the
lower ranked ones. The proposed approach for ranking counterexamples consists

of the following steps (see Figure 1.3):

1. Assumption mining. We use assertion mining tools [114, 154| on simulation



1.2. Summary of Contributions 9

traces of D to create a large set of possible assume properties over the inter-
face of B. The assumptions are mined with the goal of capturing the effect

of D on the interface of B. The assertion miner is biased accordingly.

2. Assumption weighting. We assign a belief value to each mined assume prop-
erty based on the evidences received in support of the assume property from
the simulation traces. These weights are real values between zero and one,

and thereafter treated as confidence measures for the assume properties.

3. Counterezample ranking. We group counterexamples based on the sets of
assume properties they contradict (A-¢). We aggregate the belief values
for the assume properties in the conflict set to compute a confidence met-
ric w(C) for the counterexample. This confidence metric is used to rank
the counterexamples. Intuitively, counterexamples which contradict assume
properties of high support are ranked lower than the others. Counterexam-
ples which do not have any conflict with the assume properties are ranked the
highest. Finally counterexamples are presented to the verification engineer

in descending order of rank.

The key requirement in the third step is to be able to rank the counterexamples
without actually generating all of them through model checking. This is achieved by
grouping the counterexamples based on the sets of assume properties they contra-
dict and by ensuring that a counterexample from the same family is not generated
again while searching for counterexamples having higher confidence. Here Ac rep-
resents the disjunction of the assume properties in A_c, which is added back to
assumption set A.

In the second part of this research, we look at the same problem of assigning
confidence values to counterexamples in the case that the available simulation
traces are not global traces on the whole of D, but scattered simulation traces on
individual modules surrounding B. In this case, we cannot directly mine assume
properties on the interface of B from the scattered simulation traces. We need
to determine the dependences between the signals present on the interfaces of the
different surrounding modules of B and also the dependences between the different
mined assumptions from different modules. We proceed to assign a confidence to

any given counterexample trace, using probabilistic reasoning as follows:

1. We mine assume properties on the output signals of each surrounding module

of B, in terms of its interface signals.

2. We construct a Bayesian network [82|, in which nodes represent (var, time)
tuples, where var is a signal present in a mined assumption and time is an

integer that varies from 0 to the length of the counterexample trace.



10 1. Introduction

3. We add the edges of the Bayesian network according to the temporal de-
pendences between the signals which are present in the mined scattered
assumptions, considering each of them, one at a time. This completes the

structure of the Bayesian network.

4. The conditional probability tables are constructed by evidences received in
support of the particular value combinations of the signals from the respec-
tive simulation traces. These weights are normalized to real values between
zero and one. We add the prior probabilities of the valuations of these signals

also from the traces.

5. Now we query the Bayesian network for the posterior probability that it
assigns to the valuations of signals present in the given counterexample trace.

We assign that probability to be the confidence of this counterexample.

We demonstrate both parts of our counterexample ranking methodology on large-
sized academic benchmark circuits taken from the ISCAS 89 benchmark suite [13]
and also on the L2 cache control logic of the industrial-size open-source OpenSPARC
T1 processor [18]. The experimental results show a good correlation between the
confidences assigned to the counterexamples and the actual truth of the coun-

terexamples.

1.2.3. Reusing Component Invariants in Equivalence Check-
ing
When the glue logic is modified for a bug fix, the designer hopes that the side
effects of the fix are locally contained, that is, the bug patches made in the glue
logic will not affect equivalence between signals which were not intended to be
modified. However the designer is never sure which signals are logically affected
by the patch in the context of the entire glue logic. Typically bug fixes can often
involve micro-architectural change to the design, involving timing changes, changes
in pipelining, pre-computing of values or such other sequential modifications due
to which the mapping between the flops in the original version of the design and
those in the modified version cannot be established. Therefore, after every patch,
a formal sequential equivalence checking has to be performed between a signal
in the modified logic and the corresponding signal in the original logic, if that
signal is not intended to be affected by the patch. This equivalence checking
cannot be restricted to the boundaries of the components which were patched and
must typically consider the entire glue logic. But sequential equivalence checking
(SEC) [79, 80] involves the traversal of the state space of the product machine of
the original and modified versions and as such, optimizations need to be applied

to it, in order to make it scalable to industrial-size designs.



1.2. Summary of Contributions 11

It is obvious that the components that were not touched by a patch remain
logically equivalent in isolation. Can we use this fact to prune the search during
equivalence checking? Since the modified parts of the glue logic can constrain the
inputs to an untouched component in a different way as compared to the original
circuit, it is possible that the logic behind a signal in an untouched component is
no longer equivalent to the original circuit in the context of the entire glue logic.
Therefore, the search for equivalence checking of the glue logic cannot completely
prune the logic of untouched components. However, we show in this part of our
research, that we can significantly prune the state space by using the equivalence
between the untouched components in the original and modified circuits.

To check whether the functionality of a signal in the modified design is equiv-
alent to that in the original design, these two signals are tied through XOR gates,
and the corresponding inputs to the design are tied together. Thereafter, SEC
methods are used to check whether the output of the XOR gate can ever be 1.
This basically boils down to checking whether there is any state in the reachable
state space of the composite design, which turns the XOR gate on. Therefore a
global invariant in our SEC context is the property that the output of this XOR
gate should always be 0, or in other words, should never be 1.

Target enlargement techniques [38], solve this problem of SEC by starting with
the target property ¢ to be the property that the output of an XOR gate is 1.
Target enlargement does backward state space traversal from the set of states
satisfying ¢, attempting to prove that the initial state is not reachable. If the
initial state is reached, then a state satisfying this target (namely, output of XOR
gate is 1) is reachable from the initial state, and consequently the two signals are
not equivalent. If the initial state is not reached, but a fixpoint on the size of the
target is reached, then we can conclude that the two signals are equivalent. In this
part of the thesis, we focus on sequential equivalence checking through backward
state space traversal of the product machine, specifically target enlargement.

In a component-based design, once a component is proved to be equivalent
to its model, we have a set of known unreachable states of that component state
space, from that individual component’s fixpoint. The state spaces are represented
implicitly using Binary Decision Diagrams (BDDs) and the BDD representing the
set of unreachable states due to all unchanged components of the glue logic, consti-
tutes a don’t care function BDD, because the component unreachable states also
remain unreachable in the global state space and transitions from the unreachable
states can be manipulated to simplify the global transition relation of the design.

Specifically, in this part of the thesis we do the following:

1. Our methodology takes advantage of these known unreachable states of the

pre-verified components, to simplify the SEC of the modified design against



12 1. Introduction

the original design, which typically involves a prohibitively large state space,
being the product of the state spaces of the components. So the local in-
variants that are being utilized here basically represent the pre-verified in-
formation that the unpatched components are equivalent to their original

versions.

2. Using the BDD of the unreachable states of components as don’t care, we
simplify the transition relation BDD of the entire glue logic, while it is being
constructed, so that at no point of time the un-optimized global transition
relation BDD has to be accommodated in memory, which creates a memory

bottleneck due to its prohibitive size.

3. When the original design and the modified design remain equivalent even
after the local change, then we are able to reduce the sequential depth of the
search by dropping any unreachable state that is encountered at any step of

the backward search.

Experimental results on academic benchmarks and also larger industrial bench-
marks and comparison with an existing academic sequential equivalence checking
solution demonstrate the effectiveness of our methodology in terms of the global
transition relation BDD size and the amount of time taken for proving equiva-
lence. We have obtained an average reduction of 39% in transition relation BDD
size using our methodology on the ISCAS 89 [13] and ITC 99 [14] benchmark
circuits and an average reduction of 37% in transition relation BDD size on the
HWMCC 08 [7] benchmark circuits and a significant reduction in sequential depth
and time taken. Our methodology is also established to perform better in terms
of running time than ABC [2]| for proving equivalence of the larger circuits when

the component invariants are reused.

1.3. Organization of the Thesis

The thesis is organized as follows.

Chapter 1: This is the introductory chapter which discusses the objective and
motivation of the problems addressed in the dissertation.

Chapter 2: This chapter presents background literature in the area of this re-
search.

Chapter 3: This chapter presents a methodology for trace assisted verification
of hardware bug fixes which involve a localized design change.

Chapter 4: In this chapter, we introduce the methodology of ranking coun-
terexamples thrown up by local model checking on a component of the glue logic,

making use of the assumptions mined from simulation traces on the glue logic.



1.3. Organization of the Thesis 13

Chapter 5: In this chapter, we present a case study on the OpenSPARC T1
processor [.2 cache and demonstrate the methodologies discussed in Chapters 3
and 4 on this.

Chapter 6: In this chapter, we address the problem of sequential equivalence
checking of the glue logic of a DUT after having undergone a patch, with a model
which is typically a previous version of the same glue logic without the patch, by
reuse of proved component invariants.

Chapter 7: This chapter summarizes the contribution of this research and presents

outlines of future problems.



