
Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1Introdu
tionValidation dominates the design
y
le time for large digital integrated
ir
uits [77℄.The volume of time and resour
es that are typi
ally dedi
ated towards designvalidation has grown with the in
reasing size and
omplexity of designs [96℄, andyet it has be
ome in
reasingly hard to arrive at a satisfa
tory veri�
ation
losure.Of parti
ularly annoying nature are the bugs that are dete
ted late in the design
y
le, sin
e they are hard to �x and even harder to verify that the �x a
tually
overs all related bug s
enarios [62℄. This thesis aims to study some of theseveri�
ation problems.Large digital integrated
ir
uits typi
ally
onsist of several fun
tional blo
ks(
omponents) and a non-trivial amount of glue logi
 whi
h stit
hes the
omponentstogether through well de�ned
ontrol and data paths. The glue logi
 implementsthe ar
hite
tural spe
i�
ation of the design using (and often reusing) the
orefun
tional units of the design. It is therefore not surprising that a non-trivialfra
tion of the late bugs are found in the glue logi
, and most of these bugsarise out of in
orre
t interpretation or implementation of the mi
ro-ar
hite
turalspe
i�
ations [40℄. When su
h bugs are found late in the design �ow, the designerhas to �x the bug and then verify that the bug �x is
orre
t and
omplete.Quite often, the bug �xes are lo
al in nature, that is, the part of the designwhi
h is modi�ed, is of modest size and is
ontained within a small stru
turalboundary [62℄. However, the
one of in�uen
e of this pat
h
an be signi�
antlylarger and in many
ases may tou
h the entire ar
hite
ture. The size (and
om-plexity) of this
one makes the problem of verifying the
orre
tness of the �x oneof the most
hallenging tasks in design veri�
ation. The fo
us of this thesis is onveri�
ation problems of this nature.Traditional approa
hes for verifying the
orre
tness of late bug �xes in theglue logi
 rely on simulation
overage of the s
enario that exposed the bug andpossibly related s
enarios. Unfortunately, at this level of integration it is veryhard to determine and
over all possible s
enarios that may expose the same bug(or a similar one) through simulation. Consequently it is not entirely un
ommon1

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

2 1. Introdu
tionin industrial pra
ti
e that the bug �x does not
over all the s
enarios and a verysimilar bug is un
overed again in the future.With the in
reased adoption of assertions (formal properties) by the digital
hip design industry, it has be
ome a part of re
ommended pra
ti
e to add an as-sertion to
apture the intended behavior when a bug that misrepresents the intentis found. Our
hallenge
an therefore be arti
ulated in terms of two veri�
ationproblems, namely (a) to verify that the design, after the (lo
al)
hanges, satis�esthe new assertion under all possible s
enarios, and (b) to verify that the
hangedoes not a�e
t the fun
tionality of those portions of the design where no
hangeis intended. This thesis proposes to use several novel te
hniques in
onjun
tionwith formal property veri�
ation for addressing the �rst veri�
ation problem froma pra
ti
al industrial perspe
tive, and novel methods for sequential equivalen
e
he
king for addressing the se
ond veri�
ation problem.1.1. Motivation and Obje
tivesThe problem addressed in this thesis
an be arti
ulated with the help of Figure 1.1.
B represents the fragment of logi
 that has been modi�ed to �x the bug. IBand OB represent the inputs/outputs into/from B respe
tively. The property, P,represents the intended lo
al behavior, whi
h has been added after the bug wasfound. Our goal is to prove that B satis�es P under all possible s
enarios thatmay be
reated by the glue logi
, D. The main
hallenge in this problem is todetermine whi
h s
enarios
an be
reated by D, and verify whether B satis�es Pin ea
h of them.

����
����
����

����
����
����

..............PSfrag repla
ements
B

D

P

IB
OB

FU1 FU2 FUk

Bug FixFigure 1.1: Problem s
enarioIt is typi
ally infeasible in industrial pra
ti
e to verify P on D using formalveri�
ation te
hniques [70℄ due to the enormous size of the glue logi
, D. Onthe other hand, formal methods
an be used to verify P on B (whi
h is mu
hsmaller). If B satis�es P, then obviously D satis�es P as well, but the reverse

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.1. Motivation and Obje
tives 3is not ne
essarily true. It is possible that none of the s
enarios under whi
h Brefutes P
an be
reated by D. In other words, fa
toring in the in�uen
e of theentire glue logi
 on the veri�
ation of P on B is our main
hallenge.There is a signi�
ant volume of literature on in
remental veri�
ation of digitaldesigns. In [78, 142, 143, 147, 148℄, the problem of in
remental veri�
ation ofhardware designs is viewed as an instan
e of dynami
 graph algorithms. In theseworks, the design is represented as a graph and
hanges to the design are viewedas edge insertions or deletions. After ea
h su
h graph update, the problem isto
he
k whether properties whi
h previously held on this graph, still hold andtherefore this
an be viewed as a problem of rea
hability analysis on dynami
graphs. However dynami
 graph
onne
tivity is an open problem with knowns
alability limitations [67℄. An in
remental and
omplete bounded model
he
kingalgorithm has been proposed in [95℄ using in
remental satis�ability solving. Butour experien
e shows that bounded model
he
king does not s
ale to the designswe fo
us on. Re
ently, Bradley et al. have proposed the i
3 model
he
ker, whi
h isan in
remental, indu
tive model
he
ker [46, 49℄, using the in
remental generationof stepwise-relative indu
tive
lauses. It seems to be a promising new dire
tion insymboli
 model
he
king and is amenable to in
remental analysis. In [67℄, Cho
kleret al. have used the same i
3 model
he
king algorithm to propose an in
rementalveri�
ation algorithm that stores information from previous veri�
ation runs andreuses it, in
ase of both positive and negative veri�
ation results. However thesemethods are appli
able when a property is formally proven on the original design,whereas in our problem the property P is added after the bug is found and model
he
king P on D does not s
ale.Combining formal and simulation te
hniques to a
hieve a more
omplete veri�-
ation of a system [43℄ has attra
ted a lot of attention. In [98℄, a tool Ket
hum hasbeen proposed whi
h
ombines simulation and formal-based te
hniques to a
hievebetter veri�
ation through automati
 test generation and rea
hability analysis.In [157℄, algorithms whi
h
ombine simulation with symboli
 methods for the ver-i�
ation of invariants are proposed. In [94℄, methodologies have been presentedto relate simulation and formal property veri�
ation te
hniques more formally toa
hieve a potentially better strategy for
ohesive
overage management in veri�-
ation.Intuitively it may appear that
ounterexample guided abstra
tion re�nementapproa
hes [75, 110℄ are useful for our problem. These methods start with asmall
one of state variables and progressively expand the
one by in
luding statevariables needed to eliminate false
ounterexamples. The task of determiningwhether a
ounterexample is real/false typi
ally works well when the property isde�ned on the boundary of the entire logi
, be
ause the
ounterexample de�nes the

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

4 1. Introdu
tioninputs to be driven to test whether the
ounterexample is reprodu
ed in simulation.On the other hand, in our problem, the
ounterexample is de�ned on the signalsof B, and there is no obvious way of determining whether it is real in the entireglue logi
 D.The motivation of this thesis is to leverage formal methods to aid the existingmanual approa
hes for verifying bug �xes. Instead of attempting to use formalmethods as a singular te
hnology for the veri�
ation problem des
ribed above,this thesis aims to use formal methods to improve
overage of relevant behaviorsand restri
t the attention of the veri�
ation engineer to those behaviors that arerelevant for the property. Spe
i�
ally this thesis addresses the following broadobje
tives:1. Traditionally, after a bug �x, the veri�
ation engineer simulates the designwith the same test-ben
h that was used to expose the bug. Formally, thistest-ben
h exe
utes one
ontrol path of the design under a spe
i�
 assign-ment to the data variables. The bug may resurfa
e on the same
ontrol pathfor a di�erent valuation of the data variables, or it may resurfa
e on a di�er-ent
ontrol path altogether. The obje
tive of this thesis is to
lassify thesepossibilities formally and then leverage the given test-ben
h to determinewhi
h of these are possible. If the bug �x is not robust, that is, it
annot beproven formally using lo
al information, then the obje
tive is to make theveri�
ation engineer aware of the gaps in the veri�
ation.2. Attempting to prove P on B is always a re
ommended step sin
e its su

essa
hieves veri�
ation
losure for P. On the other hand, when B refutes P,then the model
he
ker (that is, the formal veri�
ation tool) may return �
ti-tious
ounterexamples. If a real bug persists, then the real
ounterexamplesmay not be easily distinguishable from the numerous false
ounterexamples.It is not feasible in industrial pra
ti
e for the veri�
ation engineer to examineall
ounterexamples and determine their
orre
tness. The obje
tive of thisthesis is to extra
t knowledge from the large volume of existing simulationdata (in
luding those for individual
omponents) to �lter out the
ounterex-amples that have very little support from simulation data, and then use theknowledge extra
ted to rank the
ounterexamples in terms of their likelihoodof being real.3. A bug �x
an often lead to side-e�e
ts, that is, it
an inadvertently a�e
tparts of the design where no
hange was intended. It is therefore ne
essaryto prove that those signals that are supposed to remain the same indeedpreserve their fun
tionality in the modi�ed design. Sin
e the bug �x is lo
al

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2. Summary of Contributions 5in nature, it does not a�e
t the lo
al invariants of the other
omponentswithin the glue logi
. One obje
tive of this thesis is to leverage the lo
alinvariants of these other
omponents to prove sequential equivalen
e betweena signal in the original design and the same signal in the modi�ed design.For ea
h of these problems, our goal is to provide the veri�
ation engineer withanalyti
al aids for in
reasing his/her
on�den
e on the veri�
ation of the bug �x.We believe that this is a genuine requirement in pra
ti
e
onsidering the absen
eof any stand-alone formal method for this problem.1.2. Summary of ContributionsThis thesis presents the �ndings of our resear
h on developing methodologies foraiding veri�
ation of lo
al design
hanges in industrial-size digital integrated
ir-
uits and demonstration of the e�e
tiveness of our methodologies on various test
ases. This se
tion presents a summary of the major
ontributions.1.2.1. Tra
e Assisted Formal Methods for the Veri�
ation ofBug FixesWhen a bug is un
overed in the design late in the design
y
le, the design engineers�x the bug and simulate the modi�ed design with the same test-ben
h that exposedthe bug, to determine whether the given bug is now eliminated. But this does notguarantee that the bug
annot resurfa
e through similar but slightly di�erents
enarios. In this part of the thesis, we de�ne a family of related bugs, given abug manifestation, by identifying a minimal dynami

ausal sli
e that a�e
ts theproperty P. We analyze the logi
 �ow inferred by this dynami

ausal sli
e withrespe
t to the
onditions required to satisfy P. Using this analysis, given a �xfor the bug, we provide a
ategorization of the bug �x, whereby we guarantee the
omplete elimination of the bug in
ase it is a robust �x and in other
ases, providea report of other
ounterexamples or the gaps in
overage of this veri�
ation run,as appropriate. Spe
i�
ally the problem we address is as follows:De�nition 1.1. [Problem Statement℄:Given:1. D: The RTL implementation of the original glue logi
.2. B: A module
ontained within D.3. P: A property over the signals at the boundary of B.4. B′: The modi�ed version of module B.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

6 1. Introdu
tion5. D′: The version of D
ontaining B′ instead of B.6. T B: The test-ben
h driving D whi
h demonstrated the bug.Goal:
• To determine whether the modi�
ation of B to B′
orre
ted the bug s
enario.

+

PSfrag repla
ements
DUTTest-ben
h

COI and Dynami
Assertion Che
ker
RTL SimulatorStatement Dump

Causal Tra
e Constru
tor Causal Tra
e
Formal AnalyzerBug Pat
h Proof

Counter-examplesFigure 1.2: Overall methodology FlowThe original design had B inside D. Sin
e T B was used to demonstrate the bug,and P was added in hindsight, it follows that the simulation tra
e obtained bydriving D with T B refutes P. When B is repla
ed with B′ to pat
h the bug, it isnormal pra
ti
e to simulate D′ with T B again and
he
k that the tra
e satis�es P.We propose to extend this step with some additional formal methods inspired bysoftware veri�
ation and debugging to analyze the new tra
e and
he
k whetherthe proof of P on similar s
enarios follows from it.The broad steps in the proposed approa
h are as follows (see Figure 1.2):1. We simulateD′, whi
h is the modi�ed glue logi

ontaining the bug �x, using
T B and dump the set of statements S, whi
h
ausally a�e
t a non-va
uoussatisfa
tion of P.2. We
onstru
t a dynami

ausal sli
e C from S to isolate all statements whi
ha�e
t the su

ess of P through data or
onditional
ontrol dependen
ies. We
all this sli
e the
ausal tra
e.3. While traversing the exe
ution tra
e during dynami
 sli
ing, we also
omputethe unrestri
ted weakest pre
ondition (WP) Q along the sli
e. The weakestpre-
ondition is only
omputed for the statements whi
h are in the dynami

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2. Summary of Contributions 7sli
e. It terminates when the sli
ing terminates. The WP thus
omputed isthe logi
 inferred by the exe
ution �ow obtained in simulation.4. Based on the WP, we
ategorize the bug �x into one of the following threetypes and a

ordingly provide the following information:(a) Type-1 Fix: This is the kind of �x for whi
h the bug
annot resurfa
eeither on another
ontrol �ow or with di�erent data inputs on the same
ontrol �ow. This
an be intuitively explained as follows. In the sames
enario, in any run, the same set of statements will be exe
uted. Thesestatements may have some bran
h
onditions whose values are deter-mined from previous statements that are not
ausally determined fromthe values dumped during this window. If the �x ensures that thereare no su
h bran
h
onditions, then we have truly
overed the s
enarioand the �x is robust. We
an thus provide a guarantee in this
ase thatthe bug is
ompletely eliminated in this s
enario.(b) Type-2 Fix: This is the kind of �x for whi
h the bug
annot resur-fa
e with di�ering data input valuations on the same
ontrol path assimulated by the given test-ben
h, but might resurfa
e through somealternative
ontrol �ow of the RTL
ode. We guarantee that the bug
annot resurfa
e with di�ering data input valuations on the same
on-trol path as simulated by the given test-ben
h and additionally reportthe
ontrol points (
onditional expressions) in the sli
e, whi
h are par-tially
overed and exa
tly whi
h part of ea
h
ontrol point is
overedby this veri�
ation run.(
) Type-3 Fix: This is the kind of bug �x where the bug
an resurfa
e onthe same
ontrol �ow for di�ering valuation of data inputs. Given su
ha �x, we report another
ounterexample of P.We provide experimental eviden
e to demonstrate that the
omplexity of ver-ifying a bug �x with respe
t to the given bug s
enario is orders of magnitude lessthan attempting to prove P on D′. We demonstrate this on the snoopy Ca
he Co-heren
e proto
ol of Pentium Pro (P6), an implementation of whi
h
an be foundin the �p6bus� example in the Texas 97 ben
hmark suite [35℄. We also demonstratethe e�e
tiveness of our methodology on the L2
a
he
ontrol logi
 of the industrial-size open-sour
e OpenSPARC T1 pro
essor [18℄. Bounded model
he
king of Pdoes not s
ale on the L2
a
he of OpenSPARC due to
apa
ity limitations. Butgiven a bug manifestation and a bug �x for the same logi
, we are able to performthe aforementioned formal analysis in around 5 hours of time, and with reasonableamount of memory.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

8 1. Introdu
tion1.2.2. Formal Methods for Ranking CounterexamplesFor bug �xes that are not robust (as outlined in Se
tion 1.2.1), we must determinewhether P holds on D, as shown in Figure 1.1. Sin
e B is small, it is feasibleto formally verify P on B in isolation, that is, under the assumption that theinputs to B are un
onstrained. If P holds on B in isolation, then P also holds on
D, however the reverse is not true. For example, a
ounterexample generated bymodel
he
king P on B in isolationmay not exist inD, that is,D may not be able to
reate the s
enario depi
ted by the
ounterexample on the interfa
e of B. Typi
allythe spurious
ounterexamples are numerous and often ex
eed the number of real
ounterexamples, if any. It is pra
ti
ally infeasible for the designer to manuallyexamine ea
h
ounterexample and determine whether it is real or spurious withinthe large glue logi
 D. Formally verifying whether a
ounterexample over B isreal in D is infeasible in pra
ti
e due to the size of D and the fa
t that the
ounterexample is de�ned over signals whi
h are not on the interfa
e of D.PSfrag repla
ements

Invariant Miner
Mined

Assumptions

BeliefComputation

Model-Che
k P on Bunder assumption Â

Logi
 B Property P
Assumption Set

Assumption Set
Â

NoCounterexample
C

Find A¬C

Compute πC Add AC to Â

RankCounterexamples
Exit

Yes

Figure 1.3: Counterexample ranking tool �owIn this part of the resear
h, we present a method for ranking the
ounterex-amples obtained from model
he
king P on B, using knowledge mined from thelarge volume of existing simulation dumps on D. The expe
tation of the proposedapproa
h is that higher ranked
ounterexamples are more likely to be real than thelower ranked ones. The proposed approa
h for ranking
ounterexamples
onsistsof the following steps (see Figure 1.3):1. Assumption mining. We use assertion mining tools [114, 154℄ on simulation

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2. Summary of Contributions 9tra
es of D to
reate a large set of possible assume properties over the inter-fa
e of B. The assumptions are mined with the goal of
apturing the e�e
tof D on the interfa
e of B. The assertion miner is biased a

ordingly.2. Assumption weighting. We assign a belief value to ea
h mined assume prop-erty based on the eviden
es re
eived in support of the assume property fromthe simulation tra
es. These weights are real values between zero and one,and thereafter treated as
on�den
e measures for the assume properties.3. Counterexample ranking. We group
ounterexamples based on the sets ofassume properties they
ontradi
t (A¬C). We aggregate the belief valuesfor the assume properties in the
on�i
t set to
ompute a
on�den
e met-ri
 π(C) for the
ounterexample. This
on�den
e metri
 is used to rankthe
ounterexamples. Intuitively,
ounterexamples whi
h
ontradi
t assumeproperties of high support are ranked lower than the others. Counterexam-ples whi
h do not have any
on�i
t with the assume properties are ranked thehighest. Finally
ounterexamples are presented to the veri�
ation engineerin des
ending order of rank.The key requirement in the third step is to be able to rank the
ounterexampleswithout a
tually generating all of them through model
he
king. This is a
hieved bygrouping the
ounterexamples based on the sets of assume properties they
ontra-di
t and by ensuring that a
ounterexample from the same family is not generatedagain while sear
hing for
ounterexamples having higher
on�den
e. Here AC rep-resents the disjun
tion of the assume properties in A¬C, whi
h is added ba
k toassumption set Â.In the se
ond part of this resear
h, we look at the same problem of assigning
on�den
e values to
ounterexamples in the
ase that the available simulationtra
es are not global tra
es on the whole of D, but s
attered simulation tra
es onindividual modules surrounding B. In this
ase, we
annot dire
tly mine assumeproperties on the interfa
e of B from the s
attered simulation tra
es. We needto determine the dependen
es between the signals present on the interfa
es of thedi�erent surrounding modules of B and also the dependen
es between the di�erentmined assumptions from di�erent modules. We pro
eed to assign a
on�den
e toany given
ounterexample tra
e, using probabilisti
 reasoning as follows:1. We mine assume properties on the output signals of ea
h surrounding moduleof B, in terms of its interfa
e signals.2. We
onstru
t a Bayesian network [82℄, in whi
h nodes represent 〈var, time〉tuples, where var is a signal present in a mined assumption and time is aninteger that varies from 0 to the length of the
ounterexample tra
e.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

10 1. Introdu
tion3. We add the edges of the Bayesian network a

ording to the temporal de-penden
es between the signals whi
h are present in the mined s
atteredassumptions,
onsidering ea
h of them, one at a time. This
ompletes thestru
ture of the Bayesian network.4. The
onditional probability tables are
onstru
ted by eviden
es re
eived insupport of the parti
ular value
ombinations of the signals from the respe
-tive simulation tra
es. These weights are normalized to real values betweenzero and one. We add the prior probabilities of the valuations of these signalsalso from the tra
es.5. Now we query the Bayesian network for the posterior probability that itassigns to the valuations of signals present in the given
ounterexample tra
e.We assign that probability to be the
on�den
e of this
ounterexample.We demonstrate both parts of our
ounterexample ranking methodology on large-sized a
ademi
 ben
hmark
ir
uits taken from the ISCAS 89 ben
hmark suite [13℄and also on the L2
a
he
ontrol logi
 of the industrial-size open-sour
e OpenSPARCT1 pro
essor [18℄. The experimental results show a good
orrelation between the
on�den
es assigned to the
ounterexamples and the a
tual truth of the
oun-terexamples.1.2.3. Reusing Component Invariants in Equivalen
e Che
k-ingWhen the glue logi
 is modi�ed for a bug �x, the designer hopes that the sidee�e
ts of the �x are lo
ally
ontained, that is, the bug pat
hes made in the gluelogi
 will not a�e
t equivalen
e between signals whi
h were not intended to bemodi�ed. However the designer is never sure whi
h signals are logi
ally a�e
tedby the pat
h in the
ontext of the entire glue logi
. Typi
ally bug �xes
an ofteninvolve mi
ro-ar
hite
tural
hange to the design, involving timing
hanges,
hangesin pipelining, pre-
omputing of values or su
h other sequential modi�
ations dueto whi
h the mapping between the �ops in the original version of the design andthose in the modi�ed version
annot be established. Therefore, after every pat
h,a formal sequential equivalen
e
he
king has to be performed between a signalin the modi�ed logi
 and the
orresponding signal in the original logi
, if thatsignal is not intended to be a�e
ted by the pat
h. This equivalen
e
he
king
annot be restri
ted to the boundaries of the
omponents whi
h were pat
hed andmust typi
ally
onsider the entire glue logi
. But sequential equivalen
e
he
king(SEC) [79, 80℄ involves the traversal of the state spa
e of the produ
t ma
hine ofthe original and modi�ed versions and as su
h, optimizations need to be appliedto it, in order to make it s
alable to industrial-size designs.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2. Summary of Contributions 11It is obvious that the
omponents that were not tou
hed by a pat
h remainlogi
ally equivalent in isolation. Can we use this fa
t to prune the sear
h duringequivalen
e
he
king? Sin
e the modi�ed parts of the glue logi

an
onstrain theinputs to an untou
hed
omponent in a di�erent way as
ompared to the original
ir
uit, it is possible that the logi
 behind a signal in an untou
hed
omponent isno longer equivalent to the original
ir
uit in the
ontext of the entire glue logi
.Therefore, the sear
h for equivalen
e
he
king of the glue logi

annot
ompletelyprune the logi
 of untou
hed
omponents. However, we show in this part of ourresear
h, that we
an signi�
antly prune the state spa
e by using the equivalen
ebetween the untou
hed
omponents in the original and modi�ed
ir
uits.To
he
k whether the fun
tionality of a signal in the modi�ed design is equiv-alent to that in the original design, these two signals are tied through XOR gates,and the
orresponding inputs to the design are tied together. Thereafter, SECmethods are used to
he
k whether the output of the XOR gate
an ever be 1.This basi
ally boils down to
he
king whether there is any state in the rea
hablestate spa
e of the
omposite design, whi
h turns the XOR gate on. Therefore aglobal invariant in our SEC
ontext is the property that the output of this XORgate should always be 0, or in other words, should never be 1.Target enlargement te
hniques [38℄, solve this problem of SEC by starting withthe target property ϕ to be the property that the output of an XOR gate is 1.Target enlargement does ba
kward state spa
e traversal from the set of statessatisfying ϕ, attempting to prove that the initial state is not rea
hable. If theinitial state is rea
hed, then a state satisfying this target (namely, output of XORgate is 1) is rea
hable from the initial state, and
onsequently the two signals arenot equivalent. If the initial state is not rea
hed, but a �xpoint on the size of thetarget is rea
hed, then we
an
on
lude that the two signals are equivalent. In thispart of the thesis, we fo
us on sequential equivalen
e
he
king through ba
kwardstate spa
e traversal of the produ
t ma
hine, spe
i�
ally target enlargement.In a
omponent-based design, on
e a
omponent is proved to be equivalentto its model, we have a set of known unrea
hable states of that
omponent statespa
e, from that individual
omponent's �xpoint. The state spa
es are representedimpli
itly using Binary De
ision Diagrams (BDDs) and the BDD representing theset of unrea
hable states due to all un
hanged
omponents of the glue logi
,
onsti-tutes a don't
are fun
tion BDD, be
ause the
omponent unrea
hable states alsoremain unrea
hable in the global state spa
e and transitions from the unrea
hablestates
an be manipulated to simplify the global transition relation of the design.Spe
i�
ally, in this part of the thesis we do the following:1. Our methodology takes advantage of these known unrea
hable states of thepre-veri�ed
omponents, to simplify the SEC of the modi�ed design against

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

12 1. Introdu
tionthe original design, whi
h typi
ally involves a prohibitively large state spa
e,being the produ
t of the state spa
es of the
omponents. So the lo
al in-variants that are being utilized here basi
ally represent the pre-veri�ed in-formation that the unpat
hed
omponents are equivalent to their originalversions.2. Using the BDD of the unrea
hable states of
omponents as don't
are, wesimplify the transition relation BDD of the entire glue logi
, while it is being
onstru
ted, so that at no point of time the un-optimized global transitionrelation BDD has to be a

ommodated in memory, whi
h
reates a memorybottlene
k due to its prohibitive size.3. When the original design and the modi�ed design remain equivalent evenafter the lo
al
hange, then we are able to redu
e the sequential depth of thesear
h by dropping any unrea
hable state that is en
ountered at any step ofthe ba
kward sear
h.Experimental results on a
ademi
 ben
hmarks and also larger industrial ben
h-marks and
omparison with an existing a
ademi
 sequential equivalen
e
he
kingsolution demonstrate the e�e
tiveness of our methodology in terms of the globaltransition relation BDD size and the amount of time taken for proving equiva-len
e. We have obtained an average redu
tion of 39% in transition relation BDDsize using our methodology on the ISCAS 89 [13℄ and ITC 99 [14℄ ben
hmark
ir
uits and an average redu
tion of 37% in transition relation BDD size on theHWMCC 08 [7℄ ben
hmark
ir
uits and a signi�
ant redu
tion in sequential depthand time taken. Our methodology is also established to perform better in termsof running time than ABC [2℄ for proving equivalen
e of the larger
ir
uits whenthe
omponent invariants are reused.1.3. Organization of the ThesisThe thesis is organized as follows.Chapter 1: This is the introdu
tory
hapter whi
h dis
usses the obje
tive andmotivation of the problems addressed in the dissertation.Chapter 2: This
hapter presents ba
kground literature in the area of this re-sear
h.Chapter 3: This
hapter presents a methodology for tra
e assisted veri�
ationof hardware bug �xes whi
h involve a lo
alized design
hange.Chapter 4: In this
hapter, we introdu
e the methodology of ranking
oun-terexamples thrown up by lo
al model
he
king on a
omponent of the glue logi
,making use of the assumptions mined from simulation tra
es on the glue logi
.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.3. Organization of the Thesis 13Chapter 5: In this
hapter, we present a
ase study on the OpenSPARC T1pro
essor L2
a
he and demonstrate the methodologies dis
ussed in Chapters 3and 4 on this.Chapter 6: In this
hapter, we address the problem of sequential equivalen
e
he
king of the glue logi
 of a DUT after having undergone a pat
h, with a modelwhi
h is typi
ally a previous version of the same glue logi
 without the pat
h, byreuse of proved
omponent invariants.Chapter 7: This
hapter summarizes the
ontribution of this resear
h and presentsoutlines of future problems.

