
Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1

Introduction

1.1. Background
Parallel processing of tasks is essential to meet the demand of increasing com-

puting requirements of complex applications. Modern embedded-systems

usually include multiple general-purpose CPUs, specialized processors like

DSPs, peripherals, communication buses and memory. Applications need to

be suitably scheduled on to these embedded devices to optimize the overall

performance.

An application is typicallymodeled as a precedence constrained task graph

[75] and represented as a Directed Acyclic Graph (DAG), where the nodes rep-

resent tasks and the directed edges represent execution dependencies as well

as the amount of communication. Scheduling of tasks on the processors (task

scheduling) and edges on communication channels (edge scheduling) adhering to

theprecedence constraints is referred to as the generalMultiprocessor Scheduling

Problem. The primary scheduling objective is usually tominimize the overall exe-

cution time of the task graph under various constraints. Typically, in SoCs with

more than one processors, power consumption is also an important concern.

Nowadays programmable interfaces for dynamic voltage scaling and switch-

ing off idle hardware to reduce the overall power consumption are available.

Hence, optimizing power consumption has become a high priority scheduling

objective.

The existing solutions to the scheduling problem are mainly of two types:

static and online. In static scheduling [4, 61, 75], scheduling decisions such as

individual task mappings on processors and edge mappings on communica-

tion subsystems are taken at compile-time. In online scheduling [37, 92], the

above scheduling decisions are taken at the run-time. In the literature, static

scheduling has usually been preferred over online scheduling for precedence

constrained task graphs to reduce the scheduling overhead at run-time.

1



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

2 1. Introduction

A static task graph is usually referred to as a task graph whose structure or

execution time of individual tasks are known a-priori and remain constant at

run-time. Traditionally significant research has focussed on static task graph

models. A dynamic task graph is referred to as a task graph whose graph

structure or execution time of nodes may vary at run-time. A conditional

task graph (CTG) [33, 122] is a special DAG in which control flow is captured

at the conditional nodes. After execution of a conditional node, depending

on the condition evaluated, one of the execution paths is selected for further

execution and other alternative paths are discarded. Thus, the final sub-graph

that gets executed is decided at run-time and hence, it belongs to the class of

dynamic task graphs. Moreover, the exact execution time of a task at run-time

is hard to predict [35, 98]. This is because each task in a task graph may be a

macro task, it may contain loops and conditions which change the execution

time of the task at run-time. Such task graph models [98, 119] with variable

execution time also qualify as dynamic task graphs.

The general multiprocessor scheduling problem to minimize the execution

time is known to be NP-complete. Further, parameters such as arbitrary com-

munication/computation cost [61, 74], presence of conditional tasks [33, 122],

contention in communication channels [114], homogeneous/heterogeneous na-

ture in the processors [12], task duplication [3, 11], arbitrary connected pro-

cessor models [31] and storage constraints [99] increase the solution space by

many-fold. Amongst a variety of such assumptions and architecture models

that have emerged in the literature, this thesis focusses on non-preemptive task

graphs and homogeneous processor models.

Due to the intractable nature of the problem, heuristic based solutions

are usually preferred by researchers and these solutions focus on solving the

scheduling problem efficiently and providing near-optimal results. Tradition-

ally, List Scheduling [61, 74] based heuristic solutions have been preferred be-

cause of their low complexity nature. In list scheduling, each task is assigned

a priority and an ordered list is prepared in decreasing order of their priori-

ties. Then the tasks are sequentially assigned to favorable processors. At each

scheduling step the communication edges of the scheduled task aremapped on

to the communication channels by using a suitable edge scheduling technique.

The key aspects of a list scheduler include priority calculation and processor

selection for a task using schemes such as dynamic critical path based priority

[74]. In some studies additional optimization techniques [55, 98, 125] such as

genetic algorithm and simulated annealing are combined with list scheduling.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2. Static and Dynamic Task Graphs 3

In the domain of scheduling with the objective to minimize power con-

sumption, there are multiple power consumption factors that are studied in

the literature [124]. Static Power Management (SPM) [49, 129] and Dynamic

Power Management [131, 107] techniques are used to reduce the overall power

consumption. In the context of dynamic task graph scheduling,Dynamic Power

Management techniques become more relevant. In dynamic task graph sched-

ules, slacks are produced continuously during execution due to early finish of

tasks or conditional paths that are not executed. These slacks can be effectively

used to reduce the Dynamic Power consumption by a suitable Dynamic Voltage

Scaling (DVS) [124, 131] methodology. Since there is a quadratic dependency

of dynamic power consumption on the supply voltage, the reduction in supply

voltage decreases the energy consumption considerably. The lowering of sup-

ply voltage also decreases the maximum operating frequency and that results

in increase in the task execution time. Thus deadline guarantee becomes an

important constraint in DVS techniques.

The work presented in this thesis primarily aims at scheduling problems of

dynamic taskgraphsonmultiprocessor systems. Schedule lengthorMakespan

minimization and online slack distribution for power reduction are the two

primary objectives in this work. Experimental results on a large set of task

graphs and on multiprocessor systems in the range of 2 − 8 processors have

been presented. The proposed algorithms also intend to be efficient and incur

low overhead at run-time.

The rest of the chapter is organized as follows. Section 1.2 explains the

representationsof static anddynamic taskgraphswith an example. Motivation

and objectives of the thesis are explained in Section 1.3. The contributions of

the thesis is given in Section 1.4. Finally, rest of the thesis organization is

provided in Section 1.5.

1.2. Static and Dynamic Task Graphs
Wedescribe the basic representations of static anddynamic task graphswith an

example. As discussed earlier, a dynamic task graph can be a conditional task

graph and/or it contains tasks whose execution times vary at run-time. Figure

1.1(a) shows a conditional task graph with a conditional node v3. Depending

on whether v3 is evaluated to A or A′, v6 or v7 is selected for further execution.

If we consider v3 to be a normal node instead of a conditional node, the

representation reduces to that of a static task graph. Figure 1.1(b) shows a

dynamic task graph with 4 nodes with two nodes v2 and v3 having variable



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

4 1. Introduction

execution times at run-time. All communications are assumed to take 3 units

of time. The execution times of v1 and v4 are fixed (to be 5 each), where as,

v2 and v3 can complete their execution within the execution time (7, 10) and

(4, 7) at run-time, respectively. If we assume that the tasks v2 and v3 always

execute at their worst-case execution times which are shown to be 10 and 7,

respectively, it becomes the representation of a static/deterministic task graph.

10

5

(a) (b)

5
3

33

3

10 5

10

10
5

4−7
7−10

55

10

10

v1

v1

v2

v2
v3

v3

v4

v4

v5 v6 v7

v8 v9

v10

A A′

Figure 1.1: a) An Example Task graph with a conditional node v3 b) An Exam-
ple task graph two variable time execution nodes v2 and v3

1.3. Motivation
Static task graph scheduling techniques have evolved to many classes of

sub-problems such as scheduling without communication, scheduling with

communication and contention, scheduling under duplication schemes, etc.

However, the focus on dynamic task graphs has been limited and the existing

solutions are mainly extensions of the scheduling algorithms of static task

graphs. Since applications and architectures have become complex over time,

dynamism in task graphs at execution-time is sometimes unavoidable. This

has been the primary motivation towards developing scheduling solutions for

dynamic task graphs. Observations stated below encouraged us to pursue this

research.

1. Online Scheduling: Static scheduling is generally preferred over on-

line scheduling in static task graphs because in static scheduling all the

scheduling decisions are known before program execution and actual



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.3. Motivation 5

scheduling overhead is minimized. However, for dynamic task graphs,

we have observed that a static schedule is not always sufficient and

making schedule adjustments at run-time is required to provide a better

schedule length. Advanced static scheduling techniques consider task

variations at compile-time. However, they eventually provide a static

schedule which cannot be adjusted at run-time. These static schedules

fix the tasks on to the processors and thus limit the scope of schedule

adjustments. We observed that there are cases when an online scheduler

is essential for improvements in the schedule length of dynamic task

graphs. We explain this with an example. Figure 1.2(a) shows a static

schedule of the task graph shown in Figure 1.1(b) on a two processor

system, pe1 and pe2. The worst-case schedule length of this static sched-

ule is 23. (We may note here that communication time between two

nodes scheduled on to the same processor is considered to be zero and

therefore the corresponding edges are not shown in the diagram). It can

be observed from Figure 1.2(b) that a schedule length of 20 is obtained

which is optimal when v3 finishes early by 3 time units. Similarly, Figure

1.2(c) shows that the a schedule length of 23 is obtained when v2 finishes

early by 3 time units. Figure 1.2(d) shows for the later case, by executing

v4 on pe2, a better schedule of schedule length 20 can be obtained. How-

ever, v4 cannot be statically moved to pe2 because it will result in increase

in schedule length for the case where v2 executes at its worst-case time

leading to a worse schedule length of 23 compared to the previously

obtained schedule length of 20. It can be observed that no static schedule

can be created that can work well for both the cases of v2 finishing early

and v3 finishing early and hence, the processor assignment for the node

v4 needs to have some sort of online consideration.

2. Overhead and Hybrid Scheduling: Scheduling overhead is another

reason for static scheduling getting preference over online scheduling.

A purely online scheduler may incur significant overhead if it has to

perform the scheduling as well as adjustments at run-time. We observed

that an approach in which online scheduling is guided by prior offline

processing can be an effective solution to minimize overall execution

time. In a hybrid technique, processing intensive scheduling decisions

can be made offline and the scheduling calculations that are critical for

schedule adjustments can be made part of the online scheduler.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

6 1. Introduction

t=5

t=15

t=23

t=0

t=20

7

3

3

Processor

5

Processor

7

Processor

7

3

7

ProcessorProcessor

4

3

10 3

(d)

ProcessorProcessor

3

3

710

5

(a) (b) (c)

5

55

Processor

5

5

3

5

v1 v1 v1 v1

v2v2 v2 v2v3v3 v3 v3

v4
v4 v4

v4

pe1pe1 pe1 pe1pe2 pe2 pe2 pe2

Figure 1.2: a) Static Schedule of 1.1(b) on two processors, b) Optimal Static
Schedule with v3 is finishing early, c) Static Schedule with v2 finishing early, d)
Online remapping with v2 finishing early

3. Slack Distribution for Power Reduction: In dynamic task graphs, tasks

may finish early or some tasks may not execute due to conditional paths

leading to slack formation in the course of execution. In the presence

of multiple processors, slack distribution algorithms such as [130] have

been proposed. These methods use the slack to prolong the execution of

a few tasks and reduce the supply voltage of the processors. We have

observed that by analyzing a few properties of the dynamic task graph

schedules, significant improvements can be achieved. Since the slack

distribution by the above analysis can again lead to significant overhead

at run-time, hybrid strategies are essential to keep the overhead of the

online scheduler low.

1.4. Contributions of this work
The main contribution of this work is to address the dynamic task graph

scheduling problem for schedule length and power minimizations. The con-

tributions include:

• Hybrid Scheduling of Dynamic Task Graphs with Limited Duplica-

tion: We develop a hybrid (mixing static and online) scheduling al-

gorithm for task graphs without communication under memory con-

straints.

• Online Scheduling of Dynamic Task Graphs with Communication

and Contention: In the presence of communication and contention, we

develop an online scheduling strategy for dynamic task graphs for two

types of communication models, namely, point-to-point and broadcast

models.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.4. Contributions of this work 7

• Slack Distribution in Dynamic Task Graph Schedules for Power Re-

duction: We present an online slack distribution methodology to reduce

power consumption using offline task graph mapping analysis.

We now provide an overview of the above methodologies.

1.4.1. Hybrid Scheduling of Dynamic Task Graphs with Lim-

ited Duplication

The first work in this thesis addresses the scheduling problem of dynamic task

graphs on multiprocessors under memory constraints. We observed that due

to dynamism in the tasks, the workload distribution in processors becomes

imbalanced in static schedules at run-time. The objective of this work is

to improve the schedule length in such cases by mixing static and online

techniques.

The input model accepts a given conditional task graph G(Vs,Vc,Es,Ec)

where each task vi ∈ G can take any value between BCETvi and WCETvi at

run-time and has a storage memory requirement of csvi . The communication

cost between nodes has been neglected in this work. A given number of

limited homogeneous processors are available and each processor pe j has a

local code memory of size Mpe j . The scheduling problem in this work is to

schedule the task graph on the processors and minimize the schedule length.

The code memory constraint imposes restrictions on the number of tasks that

each processor can hold and imposes a limit on the number choices among the

processors on which a node can be scheduled at run-time.

We have presented the solution methodology as a three phase strategy. In

the first phase (static mapping), a static scheduling is performed on the proces-

sors and a schedule graph (GS) and a concurrency graph (GC) are constructed.

In the second (selective duplication) phase, Gs and Gc are analyzed and based

on few derived properties, a set of nodes are eliminated from duplication

which are not likely to produce schedule length improvement with a possible

rescheduling. Each node vi in the remaining set is assigned a weight which

denotes a possible schedule length gainWvi→pe j , if a rescheduling is performed

at run-time on pe j. Then, each processor pe j is assigned a set of nodes such that
∑

Wvi→pe j is maximized and the memory constraint in each processor is met

i.e
∑

csvi ≤ Mpe j . The third (online) phase is a run-time scheduling algorithm

that maintains a list of free nodes and assigns them to suitable processors at

run-time. We have developed online scheduling strategies for both deadline

guarantee as well as without a necessary deadline guarantee.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

8 1. Introduction

We have compared the proposed strategy with the static scheduler pro-

posed by Xie & Wolf [122] and critical path based algorithm [74] with neces-

sary modifications for the comparison. Experimental results indicate that this

technique provides better average schedule length (8% − 20%) compared to

static schedulers in the presence of dynamism in task graphs. The effects of

model parameters like number of processors, memory and various task graph

parameters on performance are investigated in this work. Experimental re-

sults also indicate that the average schedule length improves with increasing

dynamism in the task graphs and with increasing availability of local memory

in each processor.

1.4.2. Online Scheduling of Dynamic Task graphs with Com-

munication and Contention

The second problem in this thesis addresses the dynamic task graph schedul-

ing problem with non-negligible communications associated with the edges.

We observed that in the presence of communication and limited number of

channels, online scheduling of tasks becomes even more important.

Similar to the first problem, a dynamic task graph and a set of limited

number of processors are taken as input. In this task model, each edge ei j

is associated with communication c(ei j). The processor model is specified by

a set of homogeneous processors connected by a communication system B

with z(B) number of independent channels connected to all the processors.

A channel can carry only one communication at a particular time so it may

lead to channel contention at run-time. Two types of communication mod-

els have been assumed, namely, point-to-point and broadcast communication

models. In point-to-point communication model, the target processor of a

communication has to be identified and communicated with and in the broad-

cast communication model, a communication is broadcast to all the processors.

The objective of this problem is to schedule the tasks on the processors and

edges on the communication channels to minimize the schedule length.

In this work, we have presented an online scheduling methodology as a

solution. The global online scheduler is modeled as an event based scheduler

that acts on a task completed event or a free processor event. In the broadcastmodel,

in a task completed event, the outgoing communications of the completed

task are scheduled if the child task is not likely to be scheduled on the same

processor. The actual allocation of the child task is deferred to a later time. In

each free processor event, among the ready tasks, the highest priority task is



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.4. Contributions of this work 9

assigned to theprocessor. In the point-to-point communicationmodel, in a task

completed event, additionally, a suitable processor for each of the child nodes

of the task is identified and communicated with. This processor allocation of a

child task is done by analyzing the already scheduled tasks on each processor

pe j as well as on the data ready time of the task on that processor (drt(vi, pe j)).

Themethodology has been designed tomaintain a low overhead of scheduling

specifically for limited number of processors and channels.

We compared the proposed strategywith the contention-aware static sched-

uler proposed by Sinnen and Sousa [114] combinedwithmodifications for con-

ditional task graph scheduling proposed by Xie & Wolf [122]. Experimental

results indicate that this technique adapts better to variation in task graphs

at run-time and provides better schedule length (12% − 22%) compared to a

static scheduling methodology. The effects of model parameters like number

of processors, memory and other task graph parameters on performance are

investigated in this work. We show that this techniqueworks well for dynamic

task graphs with high dynamism, number of processors in the range of 2 − 6

and moderate communication to computation ratio.

1.4.3. Slack Distribution in Dynamic Task Graph Schedules

for Power Reduction

In the final work, we address the problem of slack distribution in dynamic

task graph schedules with power reduction objective. We observe that due

to dynamism in the task graph, slacks are continuously produced throughout

the execution of the task graph. In the work described in the earlier two

subsections, slacks are used to improve the schedule length. In this work, the

slack produced at run-time is used to dynamically scale supply voltage but

with the constraint of meeting the overall deadline. Though several online

slack distribution strategies [130] exist in the literature, we observe that an

offline analysis with knowledge of a few properties of the dynamic task graph

may assist the online slack distribution strategies and improve on the energy

savings while maintaining low overhead.

The processor model assumes a set of voltage scalable processors with

continuous (Vmin − Vmax) or discrete voltage levels. This work uses the cur-

rently available slack (st) as well as estimated future slack FSτi and estimated

future workload FWτi to distribute the slack at run-time. In the context of

a dynamic task graph mapped on to multiprocessors, these estimations are

complex compared to that of its single processor counter part.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

10 1. Introduction

We present an inter-task slack distribution scheme for this problem and

describe it as a two phase strategy. In the offline phase, we calculate the FSτi
and FWτi of each task τi with a novel computation chain extraction process.

The procedure for this calculation is derived from effective slack andworkload

calculations of simple task chains in series and parallel combinations. In the

online phase, a local online scheduler uses the values obtained from the offline

phase and makes a simple calculation sτ = min(st,
ewτ
FWτ
· (st + FSτ)) to decide on

the slack allocated (sτ) to each task τ and rest of the slack is forwarded. This

ensures O(1) complexity at run-time as the other deciding parameters of slack

distribution are calculated in the offline phase.

We compare the proposed technique with greedy and path based slack

distribution techniques. Results indicate up to 6% − 13% more energy saving

can be achieved with this methodology over such methods.

1.5. Thesis organization
The rest of the thesis is organized as follows:

Chapter 2: A literature survey on multiprocessor scheduling algorithms is

provided in this chapter. We have discussed basic list scheduling tech-

niques along with advanced algorithms for both schedule length and

power minimization.

Chapter 3: In this chapter, we present a hybrid scheduling algorithm for dy-

namic task graphs under memory constraints. We present a three phase

strategy with limited duplication in this work.

Chapter 4: An online scheduling algorithm is presented that is intended for

the scheduling problem of a dynamic task graphs with communication

cost on a target architecture consisting of limited number of communi-

cation channels leading to possible contention at run-time. Two types

of communication models, namely, point-to-point and broadcast models

are considered.

Chapter 5: A new slack distribution strategy that can be used to adjust the

supply voltage at run-time is described in this chapter which is guided

by an offline task graph mapping analysis.

Chapter 6: Finally a conclusion of the work is presented with a summary of

the work done in this thesis. We discuss the possible extensions and

future scope in this chapter.


