PERFORMANCE OF INDIAN MAJOR CARPS CULTURED WITH DIFFERENT STOCKING DENSITIES AND MANAGEMENT PRACTICES

Thesis submitted to the

Indian Institute of Technology, Kharagpur

For award of the degree

of

Doctor of Philosophy

by

Narayan Bag

Under the guidance of

Prof. Bimal Chandra Mal and Dr. Sanjib Moulick

DEPARTMENT OF AGRICULTURAL AND FOOD ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

JULY 2012

© 2012 Narayan Bag. All rights reserved.

DECLARATION

I certify that

- a. The work contained in the thesis is original and has been done by me under the general supervision of my supervisors.
- b. The work has not been submitted to any other Institute for any degree or diploma.
- c. I have followed the guidelines provided by the Institute in writing the thesis.
- d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute.
- e. Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references.

Signature of the Student

CERTIFICATE

This is to certify that the thesis entitled **Performance of Indian Major Carps Cultured with Different Stocking Densities and Management Practices**, submitted by **Narayan Bag** to Indian Institute of Technology, Kharagpur, is a record of bona fide research work carried out under our supervision and we consider it worthy of consideration for the award of the degree of Doctor of Philosophy of the Institute.

Dr. B.C. Mal Professor (Supervisor)

Dr. S. Moulick Lecturer (Sr. Scale) (Supervisor)

Date:

APPROVAL OF THE VIVA-VOCE BOARD

			(DD/MM/YR)
Certified that the thesis ent CULTURED WITH DIFFER PRACTICES submitted by N Kharagpur, for the award of the external examiners and that the voce examination held today.	EENT STOCKING DENS NARAYAN BAG to the he degree Doctor of Philo	SITIES AND Indian Institut osophy has bee	MANAGEMENT te of Technology on accepted by the
(Member of the DSC)	(Member of the DSC)	(Me	ember of the DSC)
(Supervis	or)	(Supervisor)	
(External Examiner)			(Chairman)

ACKNOWLEDGEMENTS

I take this rare opportunity to express my deep sense of gratitude to my supervisors, Dr. Bimal Chandra Mal, Professor (at present Vice Chancellor, Chhattisgarh Swami Vivekanand Technical University, Bhilai) and Dr. S. Moulick, Sr. Lecturer, Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, for their patient counsel, sustained interest, constant encouragement, precious suggestions, talented and inspiring guidance and thoughtful and constructive criticisms throughout the course of the investigation and preparation of manuscript. My ability could only blossom due to their pinning and constant superb guidance.

I am very much grateful to Prof. P.B.S. Bhadoria, Head of Agricultural and Food Engineering Department, for providing me necessary facilities to carryout the research work. I respectfully acknowledge the contributions of Mr. Chanchal Kumar Mukherjee, Assistant Professor; Dr. P.S. Rao, Assistant Professor; Dr. A. Mitra, Associate Professor and Dr. B.S. Das, Associate Professor of Agricultural and Food Engineering Department and Dr. T.K. Maiti, Associate Professor, Department of Biotechnology, IIT Kharagpur for their continuous inspiration, cooperation and valuable suggestions during my research work and manuscript preparation.

I am extremely thankful to the Director of Fisheries, Government of West Bengal for giving me the permission to complete the research work.

I am extremely indebted to Dr. T.K. Ghosh, Associate Professor, Department of Aquaculture, Dr. T.S. Nagesh, Associate Professor, Department of Fisheries Resources Management of the West Bengal University of Animal and Fishery Sciences for their invaluable suggestions, advice and help, without which this work could not have been possible.

I wish to extend my sincere thanks to fellow scholars Lalabhai, Prasantada, Dibyenduda, Sudiptada, Manjusha, Avinash, Tanbeer, and Sudhanshu for their constant help, encouragement, inspiration and technical and mental support during my research work.

I would like to convey my thanks to the supporting staff of Aquacultural Engineering section of Agricultural and Food Engineering Department, IIT Kharagpur, especially Kallol, Shibu Pal, Shibu Sheet, Ratanda, Somnathda, Tududa, Yadavda, Uttam for their necessary help and assistance.

I express my gratitude to all whose names have not been mentioned individually but have helped me directly or indirectly in this work.

Lastly, I am grateful to my parents, parents-in-law, wife, little daughter, sister, brother-in-law and other well wishers of my life for their love, support and constant encouragement.

IIT Kharagpur July, 2012

(Narayan Bag)

List of Abbreviations

ANOVA Analysis of variance

ARR Annual rate of return

BCR Benefit cost ratio

CF Cash flow

DO Dissolved oxygen

FCR Feed conversion ratio

G.O.C Groundnut oil cake

IMC Indian major carp

IO Initial outlay

IRR Internal rate of return

M.O.C. Mustard oil cake

MP Management practice

NPV Net present value

PI Profitability index

SD Standard deviation

SGR Specific growth rate

St.D Stocking density

TAN Total ammonia nitrogen

TOC Total organic carbon

TSS Total suspended solids

List of Figures

No.	Title	Page
3.1	Layout of Experimental Ponds and Crop Fields	35
3.2	Schematic Diagram of Experimental Design	39
3.3(a-f)	Views of Experimental Ponds and Associated Activities	43
4.1(a-c)	Month-wise Variation of Temperature in Different Treatments and MPs	60
4.2(a-f)	Diel Fluctuation of Water Temperature in Different Experiments	61
4.3(a-c)	Month-wise Variation of Water pH in Different Treatments and MPs	64
4.4(a-c)	Values of Water pH at Dawn and Dusk in Different Treatments	65
4.5(a-c)	Month-wise Variation of Dissolved Oxygen in Different	69
	Experiments	
4.6(a-f)	Diel Variation of Dissolved Oxygen in Different Treatments	70
4.7(a-c)	Values of Dissolved Oxygen at Dawn and Dusk in Different	71
	Experiments	
4.8(a-c)	Month-wise Variation of TAN in Different Experiments	75
4.9(a-c)	Values of TAN at Dawn and Dusk in Different Treatments	76
4.10(a-b)	Month-wise Water Exchange (%) in MP-II and MP-III	77
4.11(a-c)	Month-wise Variation of Nitrite Nitrogen in Different	80
	Experiments	
4.12(a-c)	Month-wise Variation of Nitrate Nitrogen in Different	82
	Experiments	
4.13(a-c)	Month-wise Variation of PO ₄ -P in Different Treatments and MPs	85
4.14(a-c)	Month-wise Variation of TSS in Different Treatments and MPs	87
4.15(a-f)	Growth Performance of Catla in Different Experiments	93
4.16(a-f)	Growth Performance of Rohu in Different Experiments	94
4.17(a-f)	Fig. Growth Performance of Mrigal in Different Experiments	95
4.18	Sectional View of 1.0 ha Polythene Lined Pond (Not to Scale)	109

List of Tables

No.	Title	Page
3.1	Amount of Lime Applied in Different Treatments of MPs	41
3.2	Proximate Composition of Feed Ingredients	46
3.3	Proximate Composition and Energy Content of Formulated Feed	46
3.4	Number of Feeding Day, Feed Applied and Survival Rate	47
4.1	Mean (± SD) Values of Temperature (°C) Recorded in Different	59
	Experiments	
4.2	Mean (± SD) Values of pH Recorded in Different Experiments	63
4.3	Suggested Liming Schedules for Different Treatments and MPs	66
4.4	Mean Values (± SD) of Dissolved Oxygen in Different Experiments	67
4.5	Aeration Schedules for Different Treatments of MP-III	72
4.6	Mean Values (± S.D.) of Total Ammonia Nitrogen in Different	73
	Experiments	
4.7	Water Exchange Schedule for Three Different Treatments of MP-II	78
4.8	Water Exchange Schedule for Three Different Treatments of MP-III	78
4.9	Mean (± S.D.) Values of Nitrite Nitrogen in Different Treatments	79
	and MPs	
4.10	Mean Values of Nitrate-nitrogen in Different Treatments and MPs	81
4.11	Mean Values (± S.D.) of Orthophosphate in Different Treatments	84
	and MPs	
4.12	Mean Values (± S.D.) of Total Suspended Solids in Different	86
	Experiments	
4.13	Sediment Characteristics of Different Treatments and MPs	89
4.14	Initial and Final Weight of Fish in Different Treatments and MPs	92
4.15	Survival Rate of Fish in Different Treatments and MPs	97
4.16	Species-wise Specific Growth Rate in Different Experiments	99
4.17	Species-wise Production in Different Experiments	101
4.18	Species-wise Contribution of Fish in Different Experiments	104

4.19	Feed Conversion Ratio in Different Treatments and MPs	106
4.20	Initial Outlay (Rupee) for Construction of one Hectare Farm	110
4.21	Investment Costs and Income in Different Treatments of MP-I	111
4.22	Investment Costs and Income in Different Treatments of MP-II	112
4.23	Input Costs and Income in Different Treatments of MP-III	113
4.24	Profit (Rs) for Different Treatments and Management Practices	115
4.25	Payback Period (Years) for Different Treatments and Management	116
	Practices	
4.26	Annual Rate of Return (%) in Different Experiments	117
4.27	Net Present Values in Different Experiments	119
4.28	Net Return per Month per Hectare in Different Experiments	120
4.29	Profitability Index in Different Experiments	120
4.30	Internal Rate of Return in Different Experiments	122
4.31	NPV and Monthly Net Return for Different Pond Areas	123
4.32	Model Bankable Project of Intensive IMC Culture in 1.0 Hectare	125
	Farm	
4.33	Model Bankable Project of Intensive IMC Culture in 0.30 Hectare	126
	Farm	
4.34	Sensitivity Analysis of Different Items with \pm 10% Variation in	127
	Cost	
4.35	Sensitivity Analysis of Different Items with $\pm 20\%$ Variation in	128
	Cost	
4.36	Sensitivity Analysis of Different Items with \pm 30% Variation in	129
	Cost	
4.37	Amount of Nutrients Discharged through Pond Effluents into Field	132
	Crops	

ABSTRACT

Performance of Indian major carps (IMC), viz., catla (Catla catla), rohu (Labeo rohita) and mrigal (Cirrhinus mrigala) was evaluated with stocking densities (St.D) of 20 000, 35 000 and 50 000 fingerlings ha⁻¹ under different management practices (MP). Different MPs included the culture of IMC (a) without water exchange and supplementary aeration (MP-I), (b) with water exchange and without supplementary aeration (MP-II) and (c) with water exchange and supplementary aeration (MP-III). Fishes were fed pelleted feed containing 35% crude protein in all the three different MPs, pH of pond water was maintained within its ideal range through intermittent application of lime. In MP-II and MP-III, concentration of total ammonia nitrogen (TAN) was maintained within its critical limit through water exchange. Problem of environmental pollution during water exchange was avoided by discharging the effluent into the nearby agricultural crop field. Significant decrease in TAN and feed conversion ratio along with substantial increase in production for St.D-3.5 and St.D-5.0 of MP-II compared to that of MP-I confirmed the effectiveness of water exchange on water quality and fish growth. Values of profit, net present value (NPV), profitability index (PI) and internal rate of return (IRR) were also found significantly higher in MP-II over MP-I for St.D-3.5 and St.D-5.0. In MP-III, provision of supplementary aeration was made to ensure minimum dissolved oxygen (DO) level of 4.0 mg L⁻¹ in all the treatments. Increased total productions of 80% in St.D-2.0, 115% in St.D-3.5 and 117% in St.D-5.0 of MP-III over MP-II confirmed the significant positive impact of aeration. Significant increase in profit, NPV, PI and IRR and decrease in payback period in MP-III compared to MP-I and MP-II showed the effectiveness of aeration from economic point of view. Maximum profit of about Rs 726 000 ha⁻¹ yr⁻¹ was recorded in St.D-5.0 of MP-III. A pond of 0.30 ha area has been identified as a desirable pond size for earning livelihood of a marginal fish farmer with a monthly income of above Rs 12 000. Feed cost and sale price are found as the most important sensitive variables in intensive IMC culture system.

Keywords: Indian major carp, stocking density, water quality, water exchange, supplementary aeration, fish production, economic analysis, sensitivity analysis

CONTENTS

Title Page		i
Declaration		ii
Certificate		iii
Approval of	the Viva-voce Board	iv
Acknowledge	ements	v
List of Abbre	eviations	vi
List of Figure	es	vii
List of Table	s	viii
Abstract		x
Contents		xi
Chapter 1	Introduction	1 - 5
	1.1 Background	1
	1.2 Objectives	5
Chapter 2	Review of Literature	7 - 32
	2.1 Culture of Indian Major Carps	8
	2.2. Water Quality	13
	2.2.1 Temperature	14
	2.2.2 Water pH	15
	2.2.3 Dissolved Oxygen	16
	2.2.4 Total Ammonia Nitrogen	18
	2.2.5 Nitrite Nitrogen and Nitrate Nitrogen	20
	2.2.6 Orthophosphate	21
	2.2.7 Total Suspended Solids	22
	2.3 Pond Soil Quality	23
	2.4 Feeding	25
	2.5 Aeration	27
	2.6 Water Exchange	29
	2.7 Economic Analysis of Aquaculture System	31

Chapter 3	Materials and Methods	33 - 58
	3.1 Study Area	33
	3.2 Construction of Polythene Lined Ponds	33
	3.3 Experimental Design and Duration of Experiment	37
	3.4 Pond Fertilization and Liming	41
	3.5 Fish Stocking	45
	3.6 Feeding	46
	3.7 Water Exchange	48
	3.8 Aeration	48
	3.9 Fish Sampling	49
	3.10 Harvesting	49
	3.11 Fish Sale	50
	3.12 Water Quality Monitoring	50
	3.12.1 Temperature	50
	3.12.2 pH	51
	3.12.3 Dissolved Oxygen	51
	3.12.4 Total Ammonia Nitrogen (TAN)	51
	3.12.4.1Calibration of Spectrophotometer for Estimation of TAN	51
	3.12.4.2 Estimation of TAN of Pond Water	51
	3.12.5 Nitrate Nitrogen (NO ₃ -N)	52
	3.12.5.1 Calibration of Spectrophotometer for Estimation of NO ₃ -N	52
	3.12.5.2 Estimation of NO ₃ -N of Pond Water	52
	3.12.6 Nitrite Nitrogen (NO ₂ -N)	
	3.12.6.1 Calibration of Spectrophotometer for Estimation NO ₂ -N	53
	3.12.6.2 Estimation of NO ₂ -N of Pond Water	53
	3.12.7 Orthophosphate (PO ₄ -P)	53
	3.12.7.1 Calibration of Spectrophotometer for Estimation of PO ₄ -P	54
	3.12.7.2 Estimation of Orthophosphate of Pond Water	54
	3.12.8 Estimation of Total Suspended Solids (TSS)	54
	3.13 Estimation of Soil Quality Parameters	54
	3.13.1 Estimation of Soil pH	55

	3.13.2 Estimation of Total Organic Carbon	55
	3.13.3 Total Available Nitrogen	55
	3.13.4 Available Phosphorus	56
	3.14 Economic Analysis	57
	3.15 Statistical Analysis	57
Chapter 4	Results and Discussion	59 - 134
	4.1 Water Quality Parameters	59
	4.1.1 Temperature	59
	4.1.2 pH	62
	4.1.3 Dissolved Oxygen	66
	4.1.4 Total Ammonia Nitrogen (TAN)	73
	4.1.5 Nitrite Nitrogen	79
	4.1.6 Nitrate Nitrogen	81
	4.1.7 Orthophosphate	83
	4.1.8 Total Suspended Solids	86
	4.2 Soil Quality	88
	4.3 Fish Growth	91
	4.3.1 Initial and Final Harvested Size	91
	4.3.2 Survival Rate	96
	4.3.3 Specific Growth Rate	98
	4.3.4 Production	100
	4.3.5 Species-wise Contribution	103
	4.3.6 Feed Conversion Ratio	105
	4.4 Economic Analysis	107
	4.4.1 Expenditure and Income	108
	4.4.2 Profit	114
	4.4.3 Payback Period	116
	4.4.4 Annual Rate of Return	117
	4.4.5 Net Present Value	118
	4.4.6 Profitability Index	120
	4.4.7 Internal Rate of Return	121

	4.4.8 Desirable Pond Area for a Small or Marginal Farmer	123
	4.4.9 Sensitivity Analysis of Various Inputs	126
	4.5 Significance of Water Exchange	130
	4.6 Significance of Aeration	133
Chapter 5	Summary and Conclusions	135 - 141
Chapter 6	Scopes for Future Study	143
References		145 - 168
Appendix A	Diel Variation of Water Temperature	169 - 171
Appendix B	Diel Variation of Dissolved Oxygen	172 - 174