
Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1

Introdu ction

1.1. Background
A real-time system is a system whose correctness depends not only on correct

functionality but also on the timeliness of the generated results. Real-time

applications span a wide range of domains including automotive and flight

control systems, monitoring systems, multimedia systems, virtual reality, in-

teractive gaming, robotics, telecommunications, etc. A late response in these

systems might cause a wrong behaviour which could possibly even lead to

a critical system failure. A typical example is an anti-lock braking system in a

car [63, 125] that is required to release the brakes within (say) 60 milliseconds

to prevent the wheel from locking.

In most real-time systems, the task / application scheduler is a major ar-

chitectural component responsible for ensuring proper processing of all tasks

having timeliness constraints on their execution response. In the presence of

several concurrent activities running on a processor, the real-time scheduler

has to ensure that each activity completes within its deadline.

Most traditional real-time executionmodels are based onLiu andLayland’s

periodic task model [80] or Mok’s sporadic task model [91]. In periodic task

systems, the task instances (or jobs) arrive regularly at periodic time intervals.

Jobs of a sporadic task on the other hand have a lower bound on their inter-

arrival times, but may otherwise arrive randomly (have no upper bound).

Scheduling of task systems which are based on these traditional execution

models haveusually been carried out bypriority-driven scheduling techniques

like Rate Monotonic Analysis (RMA) and Earliest Deadline First (EDF) (in

which the highest priority task present in the ready queue always gets hold of

the resource).

However, there also exists a large class of applications which not only

demands meeting deadlines, but also demands CPU reservation to ensure a

1

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

2 1. Introduc tion

minimumguaranteedQuality of Service (QoS). These demands are often of the

form: reserveXunits of time for applicationA out of everyY timeunits. Ensuring the

timing constraints of these systems is difficult using the traditional scheduling

models like RMA and EDF. Rate Based Resource Allocators [2, 103, 111, 120]

with their ability to provide such well-defined rate specifications form a more

effective scheduling strategy in the design of many of these systems.

Rate based schedulers form a flexible and natural resource management

strategy in many of today’s embedded systems running complex real-time ap-

plications which require to operate under stringent performance and resource

constraints. These complex real-time systems are often composed of inde-

pendent, coexisting, possibly misbehaving (by attempting to use more CPU

time than was allocated to it) real-time applications with different timeliness

constraints. An interesting example is provided bymany of today’s hand-held

devices simultaneously executing a mix of different kinds of applications such

as real-time signal processing, continuousmedia (audio andvideo streams), in-

teractive gaming, email, web browsing, etc. To achieve predictable behaviour

and to provide a guarantee of application performance, efficient algorithms are

required to manage the available resources, especially processor bandwidth,

inter-processor communication bandwidth, cache memory, power, etc. With

increased use of multiprocessor and multi-core systems in these embedded

applications, overheads of scheduling these applications across the available

computing resources have become a design concern of high criticality.

From the perspective of real-time CPU scheduling, three principal classes

of rate based resource allocation methods have evolved: fluid-flow allocation

(proportional share schedulers) [41, 94, 102], server-based allocation [4, 112], and

generalized Liu and Layland style allocation [57, 103]. This research work is based

in the area of fluid-flow allocation techniques.

The Fluid-flow allocation policies primarily aim to ensure that each task

receives a precise share of the CPU at all times. A sub-class of the fluid-flow

allocation techniques, Proportional fair scheduling, provides optimum fairness

accuracy in a dynamic environment (where new tasks arrive and existing tasks

depart at run time) and a fully utilizable processor bandwidth, but at the cost

of high scheduling, migration and context switch overheads [7, 22, 23, 115].

We now present an overview of the proportional fair schedulingmethodology.

Consider a set of tasks {T1,T2, ...,Tn}, with each taskTi having a computation

requirement of ei time units, required to be completed within a period of pi

time units from the start of the task. Proportional fair schedulers defineweight

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.1. Backg round 3

of Ti as wti =
ei
pi

and prescribe that task allocations should be managed in

such a way that each task is executed at a consistent rate proportional to

its own weight. More formally, let the start time of a task Ti be si. Then

proportional fairness guarantees the following for every task Ti: at the end of

any time slot t, si ≤ t ≤ si + pi, at least
ei
pi
∗ (t − si) of the total execution requirement

of ei must be completed. Obviously, for such a criterion to be guaranteed in a

system of m processors, we must have
∑n

i=1 ei/pi ≤ m. Also, since we usually

consider discrete timelines, appropriate integral values must be considered

while examining fairness.

Typically, proportional fair schedulers divide the tasks into equal sized sub-

tasks. At every time slot, appropriate subtasks from the set of runnable tasks

are scheduled to ensure fairness. Numerous proportional fair algorithms have

appeared in literature. These include PD (1995) [23], P f air (1996) [22], ER fair

(2000) [7] and PD2 (2004) [8] and their variants. Generally, these schedulers use

priority queues to select the next subtask, leading toO(lg n) overheads per pro-

cessor per time slot. Being global in nature, they also suffer from unrestricted

migration and context-switch related overheads. These overheads turn out to

be reasonably expensive especially in real-time systems [51]. Several variants

of proportional fair schedulers which sacrifice on the stringency of propor-

tional fairness guarantees to control and reduce these overheads have been

proposed [37, 51, 78].

This thesis primarily aims at the development of low overhead real-time

multi-processor proportional fair schedulers which provide high throughput

and fairness and have the ability to efficiently handle dynamic task sets. In

view of the fact that proportional fair schedulers form an attractive scheduling

alternative in today’s emerging multiprocessor /multicore embedded systems

which often work under high workloads and stringent resource constraints,

thiswork also endeavors to develop proportional fair algorithms that canwork

effectively under practical situations like limited power, overloads, etc.

The rest of the chapter is organized as follows. Motivation and objectives

of our work are specified in sections 1.2 and 1.3. We present a summary of the

work done by providing a brief description of each algorithm developed by

us in Section 1.4. The chapter ends by providing the organization of this thesis

in Section 1.5.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

4 1. Introduc tion

1.2. Motivation
Proportional fair schedulers with their strong notions of fairness in resource

allocation, ability to provide guaranteed rate-based execution progress for all

tasks, optimal resource utilizability and fault resilience, potentially form a very

attractive scheduling mechanism. However, in spite of all these desirable fea-

tures, actual implementations of Pfair andERfair schedulers are limitedmainly

due to relatively high scheduling complexity, inter-processor task migration

and context-switch related overheads. Along with predictable performance

guarantees, emerging real-time systems and applications are confronted with

situations which also demand improved throughput, lower energy overheads

and ability to handle transient overloads.

Reducing the number of task migrations and context switches has been

found to be one of the most useful methods to gain system throughput [51]. In

addition, fewer migrations also help improve energy efficiency. These obser-

vations have been the principal motivation towards our endeavor to develop

algorithms for fast and flexible proportional fair schedulers with reduced mi-

gration / context-switch overhead.

Power reduction has now emerged as a first-class design criterion. We

have observed that processor slack in underloaded proportional fair systems

may be judiciously used to shutdown the processor at idle times, thereby

reducing static energy consumption in the process. As static energydissipation

is becoming the major source of energy drain in today’s processors [1], we

have directed our efforts to design and develop proportional fair algorithms

that attempt to maximize continuous processor idle periods and shutdown a

processor during these intervals.

With exponential increase in the number of real-time applications and their

complexity, both server grade and embedded systems are often subject to

sudden surges in workload leading to transient overloads. Detecting such

situations a priori and avoiding them, maintaining an acceptable quality of

service to all clients until such surge of computing requirement subsides,

is of utmost importance in many cases. Hence, we have endeavoured to

suggest variations of proportional fair algorithms that effectively handle such

overloads.

1. Unrestricted migration and context-switch related overheads: In or-

der to meet the objectives of optimal fairness and bandwidth utilization

in multiprocessing environments, proportional fair schedulers gener-

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2. Motivation 5

ally resort to a global scheduling policy where a single run-queue al-

locates appropriate client tasks to all the processors at each time-slot.

This often leads to unrestricted task migrations and context switches.

Inter-processor task migrations primarily effect two types of overheads,

namely, cache-miss related overheads and communication related over-

heads. Cache-miss related overheads refer to the delay suffered by re-

sumed threads of execution due to compulsory and conflict misses while

populating the caches with their evicted working sets after a migration

takes place. Communication related overheads refer to the time spent by

the operating system to transfer the complete state of a thread from the

processor where it had been executing to the processor where it will ex-

ecute next after a migration. Obviously, the more loosely-coupled a sys-

tem, the higher will be the communication overhead. Context switches

primarily effect cache-miss related overheads only. Recently, there has

been a few attempts [37, 69, 78, 128] to control these overheads by trading

off on fairness while still preserving optimal schedulability. However,

not much effort has gone towards the development of algorithms for

restricting overheads while simultaneously guarantying optimality in

terms of both fairness and schedulability.

2. Power Awareness: While increasing throughput through the reduction

of scheduling, migration and preemption overheads is extremely im-

portant in real-time systems where time is at a premium, power-aware

scheduling techniques have also gained importance in recent times, espe-

ciallywith the advent ofmobile andhand-held embedded systemswhich

operate with limited energy budget [17, 53, 108, 110]. The scheduling

requirements in these systems is generally characterized by a trade-off

between a need to meet the performance constraints while simultane-

ously trying to minimize the overhead of power consumption. There

has been considerable research in this area in recent years and various

low-power scheduling algorithms have been developed. However, lit-

tle work has been done in the area of power-aware proportional fair

scheduling even though these schedulers with their ability to provide

hard timeliness and QoS guarantees and optimal schedulability to a di-

verse variety of real-time applications on multi-processors promise to be

an attractive scheduling alternative on these systems. Hence, research

on energy-efficient proportional fair algorithms appears to be an area of

significant importance.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

6 1. Introduc tion

3. Overload Handling: A further observation is that, with more and more

diverse and complex real-time applications being executed on today’s

embedded systems, these systems are expected to be subjected to much

higherworkloads resulting in increased chances of transient overload sit-

uations. In such situations, although highly desirable, it may sometimes

become impossible to meet all task deadlines. It may be more desirable

at this stage to complete some portions of every task rather than giving

up completely the execution of some tasks. The imprecise computa-

tion model [79] allows for this trade-off of the quality of computations

in favour of meeting the deadline constraints. In this model, a task is

logically decomposed into two sub-parts, mandatory and optional. The

mandatory sub-part of each task is required to be completed by its dead-

line, while we have a choice whether or not to execute the optional part

depending on the criticality of a given task or any other reward function.

However, the generic proportional fair scheduling framework provides

no resource allocationmechanisms for such imprecise computationmod-

els or means for preferential execution of an application with respect to

others. Proportional fair schedulers attempt to provide graceful and fair

performance degradation to all tasks in times of overload, and herein lies

their primary drawback - fair performance degradation for all tasks often

cause a majority or all of the tasks to miss their deadlines in transient

overload situations. We have identified this deficiency and the necessity

for algorithms which fare better under transient overloads.

1.3. Objectives
The aim of this work has been to investigate into some of the theoretical

and practical aspects of proportional fair schedulers keeping the problems

discussed in the previous section in view. In particular, the objectives may be

summarized as follows:

1. Design of techniques that provide optimal algorithms (in terms of both

schedulability and fairness) but with low migration and context switch

related overheads.

2. Development of low overhead scheduling strategies with bounded mi-

gration and unfairness properties. Providing fairness accuracy and mi-

gration overheads as controllable design parameters which may be set

according to the fairness and speed requirements of the system.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.4. Contributions o f this Work 7

3. Devising mechanisms which can utilize task execution slacks in under-

loaded systems to shutdown the processor at idle times, thereby mini-

mizing power consumption while still preserving optimal schedulability

and fairness properties.

4. Incorporating techniques for the a priori detection and avoidance of

transient overloads in proportional fair resource allocators.

1.4. Contributions of this Work
As part of the research work, we have developed the following five real-time,

proportional fair schedulers:

1. Sticky-ERfair: A Task-Processor Affinity Aware Scheduler: This is

a fully global optimal algorithm with reduced migrations and context

switches.

2. Partition Oriented ERfair Scheduler (POES): The second algorithm is

also optimal with reduced migrations but follows a semi-partitioned

approach switching towards higher global-ism with increasing load and

vice-versa.

3. Partition Oriented Frame Based Fair Scheduler (POFBFS): Our third

algorithm is a frame-based work-conserving proportional fair scheduler

that allowsmuch higher reduction in the number of migrations although

allowing slight deviations from perfect fairness at high workloads.

4. ERfair Scheduler with Shutdown on Multiprocessors (ESSM): This al-

gorithm is an ERfair scheduler which attempts to locally maximize the

total length of processor shutdown intervals over the schedule length

and thereby reduces static energy dissipation in the system.

5. Safe-ERfair: ERfair with a priori Overload Detection and Avoidance:

The last algorithm developed by us is a fair scheduler with the ability to

detect and avoid possible transient overloads in imprecise computational

workloads.

We now provide an overview of each of the above algorithms.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

8 1. Introduc tion

1.4.1. Sticky -ERfair: A Task-Process or Affin ity Aware Sched-

uler

Sticky-ERfair is a global algorithmwhichmodifiesBasic-ERfair tominimize the

number of inter-processor taskmigrations andpreemptionswhilemaintaining

the same order of its scheduling complexity. To achieve this, the algorithm

primarily employs twomechanisms: (I) keeping track of the processor where a

task last executed, and (II) utilizing slack resulting from higher execution rates

of tasks in ERfair systems which are not fully loaded. (When a system has

spare capacity, tasks executing in ERfair fashion utilize this spare bandwidth

and proceed at higher execution rates proportional to their task weights.)

For any given processor Vi and a set of tasks τ = {T1,T2, ...,Tσ} which

executed onVi the last time it was allocated a processor, Sticky-ERfair attempts

to execute the most recently executed task Tρ from the set τ such that such an

execution does not generate any possibility of future ERfairness violations. In

addition to saving cache-misses by reducing preemptions, this methodology

also allows re-use of any traces of non-dirty data of previously executed tasks

that still remain in cache. This is because, the more recent the last execution

of a task on a given processor, higher becomes the probability that some of its

cache contents still remain valid.

Experimental results reveal that Sticky-ERfair can achieve upto 40 times

reduction both in the number of migrations and preemptions suffered with

respect to the original ERfair scheduler [7] (henceforth, we call this scheduler

Basic-ERfair) for a set of 25 to 100 tasks running on 2 to 10 processors, while

simultaneously guaranteeing ERfairness at each time slot. Theoretical analysis

with equal priority tasks using Sticky-ERfair shows that unlike Basic-ERfair,

the number of migrations is independent of the number of tasks for Sticky-

ERfair.

1.4.2. Partition-Oriented ERfair Scheduler (POES)

POES is an ERfair scheduler that includes a low-overhead partitioning /merg-

ing mechanism which ensures 100% schedulability (as in global scheduling)

while simultaneously leveraging the benefits of lower scheduling and migra-

tion overheads of partition-based scheduling.

The principal objective of the POES scheduler is tomaximize scheduling lo-

calitywhile not jeopardizing the optimal schedulability and fairness properties

of global ERfair. Given a set of n periodic tasks {T1,T2, ...,Tn} to be scheduled

in a system of m processors {V1,V2, ...,Vm}, POES maintains the task and pro-

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.4. Contributions o f this Work 9

cessor sets partitioned into k disjoint groups ({τ1, τ2, ..., τk} and {̺1, ̺2, ..., ̺k}

respectively) at any instant during the schedule length. The tasks in group τi

are allowed to execute and migrate only within its corresponding processor

group ̺i. If {Tτi1 ,Tτi2 , ...,Tτi|τi|} denote the tasks in group τi and {V̺i1 ,V̺i2, ...,V̺i|̺i|}

denote the processors in group ̺i, then such a partition is feasible, only if,

∀ki=1

|τi|
∑

j=1

wtτi j ≤ |̺i| (1.1)

That is, the sum ofweights of the tasks in each groupmust be less than or equal

to the total capacity of the processors in its corresponding processor group.

At lower workloads, as long as the schedulability of the task set is not

compromised, a complete partition is feasible and the number of groups k is

equal to the number of processors m. If a new task arrives which cannot be

feasibly accommodated into any unique task group, two or more task groups

and their corresponding processor groups aremerged so that the newly formed

group will be able to feasibly accommodate the new task. Similarly, when

an existing task departs from any given task-group and the corresponding

processor-group contains more than one processor, POES tries to split this

group into two or more groups such that the feasibility condition in Equa-

tion 1.1 remains valid after such a split. Therefore, instead of shifting from a

completely partitioned system to a fully global one when a certain hard work-

load threshold is surpassed, POES adopts a more continuous design allowing

global scheduling within an overall partitioned approach.

Experimental results reveal that POES incurs almost no migrations at low

workloads and achieves upto 32 times reduction in the number of migrations

suffered with respect to Basic-ERfair on a set of 2 to 16 processors even when

the average task workload in the system is as high as 85%.

1.4.3. Partition Oriented Frame Based Fair Scheduler (POF-

BFS)

The work presented in this subsection is motivated by the fact that there exists

a large class of systems which need to support a dynamic mix of coexisting,

independent applications which are strictly not hard real-time but has firm

or soft real-time requirements [82, 83, 104]. Missed deadlines are undesirable

but not catastrophic. Thus, in these systems, while maintaining fairness is

important, a slight deviation from perfect fairness can be tolerated if it sub-

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

10 1. Introduc tion

stantially reduces migration overheads. This area of our research introduces

the notion of frames (where a frame denotes a time interval) in multiprocessor

proportional fair scheduling.

POFBFS works as follows: we define a frame/time-window of a certain

specific size and allocate shares (of time slots) to each task in proportion to

their weights ei
pi
within the frame. Then a two phased mechanism is used to

partition the task set into the m available processors. The first phase allocates

tasks to individual processors using the worst-fit decreasing (WFD) [88, 96]

heuristic such that the sum of task shares in each processor is less than the

frame size G and simultaneously builds a sorted list ΛMGR of tasks that cannot

receive its full share into any single processor. The second phase allocates the

tasks in list ΛMGR by partitioning the share of each task into more than one

processor. Having assigned the tasks into the available processors, the task

shares are executed using an ERfair scheduler in each processor. After execu-

tion completes inside a frame, each task is put in an appropriate future frame

such that ERfairness [7] of the system remains preserved at frame boundaries.

Theoretical analysis with POFBFS shows that the algorithm guarantees at

most (m − 1) task migrations per frame while experimental results reveal that

when compared to Basic-ERfair, it achieves 3 to 100 times reduction in the

number of migrations (for a set of 25 to 100 tasks running on 2 to 8 processors).

This reduction is however achieved at the cost of slight deviations from perfect

fairness under high workloads.

1.4.4. ERfair Scheduling with Process or Shutdown (ESSM)

As leakage power becomes a critical concern especially in embedded sys-

tems that are powered by limited energy sources, reduction of system energy

consumption through processor shutdown is becoming a policy of increasing

importance. Realizing this need, we have designed and developed the ESSM

(ERfair Scheduler with Shutdown onMultiprocessors) algorithmwhich attempts to

locally maximize the total length of shut-down intervals while simultaneously

reducing the number of such intervals (because with each shutdown /wakeup

is associated an extra energy consumption overhead). We now present an

overview of the basic working principle of this algorithm.

ERfair being a work conserving algorithm (that is, the system can never

remain idle when there are ready tasks available for execution in the run-

queue), all tasks Ti running in an underloaded ERfair system always execute

at rates e f_wti (effective weight of task Ti) which is higher than the required

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.4. Contributions o f this Work 11

execution rateswti (original weight of Ti). This higher execution rate is effected

by the fact that, due to the nature of the ERfair scheduler, the spare capacity

gets naturally shared equally among client tasks. This results in the addition

of a part of the spare system capacity to the original weight of each task,

ultimately causing faster execution progress.

Faster execution progress in turn results in the accumulation of slack by

each process. The slack of a task Ti at a given time t denotes the maximum

interval for which execution of Ti may be suspended starting from t without

the possibility of ERfairness violation. From the discussion on proportional

fair scheduling in Section 1.1, it may be intuitively understood that a task’s

slack will be 0 when it just arrives. As it keeps executing at rate e f_wti, its

slack slacki(t) also keeps on increasing linearly with time till the time where it

completes execution of its current instance. This is the point where the slack

of the task becomes maximal. Thereafter, its slack decreases linearly until its

deadline / period is reached where the slack becomes 0 again and the next

instance / job of the task arrives.

Aprocessormay sleep for amaximumduration of time ts at time t, provided

there exists a subset of tasks τ = {Tτ1,Tτ2, ...,Tτk}, such that the sum of the

weights of this subset (
∑k

i=1 wtτi) is atleast enough to shutdown a single unit

capacityprocessor and theminimumof the slacks accumulatedby these tasks is

equal to ts (mink
i=1slackτi(t) = ts). Given this feasibility condition for processor

shutdown, the ESSM algorithm uses a procrastination scheme to search for

time points within the schedulewhere shutdown intervals are locallymaximal

and shuts down one or more processors at those time points.

Evaluation results reveal that ESSM achieves good shutdown efficiency

and provides 2 to 15 times higher effective shutdown lengths as compared to

the Basic ERfair scheduler on systems consisting of 1 to 8 processors.

1.4.5. Safe-ERfair: ERfair with a priori Overload Detection

and Avoidance

Overload handling in dynamic hard real-time systems is of utmost importance

since meeting deadlines in these systems is not an option but a necessity [121].

Many of these systems include critical tasks such as telepresence, real-time

voice communication, interactive gaming, etc., where possible overloads must

be detected and avoided a priori (when a task arrives) through efficient on-line

admission control because a particular quality-of-service (QoS), once offered

to these applications, cannot be altered in the middle of task execution.

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

12 1. Introduc tion

In this area of research, we have developed the Safe-ERfair algorithm for

a priori detection and avoidance of transient overloads in imprecise computa-

tional workloads. The imprecise computational tasks that we have considered

consist of two parts - a mandatory part and an optional part. A task is said to

execute in maximal mode when it executes both its mandatory and optional

parts. When the task executes only it’s mandatory part, it executes in minimal

mode. Executing a task in maximal mode (that is, with the optional part) leads

to a reward, where the value of the reward is dependent on a task’s criticality.

The objective is to maximize processor utilization by maximizing the reward

for executing optional parts while not sacrificing the ERfairness timing con-

straints of the system and ensuring that all tasks are able to execute atleast

their mandatory parts. Experimental results show that for all the test-cases

considered, Safe-ERfair performs better than the simplistic O(n2) algorithm

ESOM.

1.5. Organization o f the Thesis
The thesis is organized into eight chapters. A summary of the contents of the

chapters is as follows:

Chapter 2 This chapter gives a survey of real-time and rate based resource

allocation, emphasizes its need and area of applicability. Different pro-

portional share and proportional fair algorithms have been surveyed

here. Finally, the chapter presents an overview of a few emerging

scheduling considerations like energy awareness, overload handling,

fault-tolerance, etc.

Chapter 3 This chapter discusses the Sticky-ERfair scheduler, a global algo-

rithm which attempts to restrict the migration and preemption related

overheads of the Basic-ERfair scheduler. Theoretical analysis and exper-

imental results for the Sticky-ERfair algorithm have been presented and

discussed.

Chapter 4 In this chapter, we present the Partition-Oriented ERfair Scheduler

(POES), another low-overhead ERfair scheduler that employs an online

partitioning /mergingmechanism that retains the optimal schedulability

of a fully global scheduler by merging processor groups as resources

become criticalwhile usingpartitioning for fast scheduling at other times.

Chapter 5 This chapterdealswith thePartition-Oriented Frame-Based Fair Sched-

uler (POFBFS), a frame-based proportional fair scheduler which parti-

Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.5. Organization o f the Thes is 13

tions task sets into individual processors at the beginning of each frame

(where frame denotes a time interval) and globally resynchronizes at

the end of the frame. We show (through theoretical analysis and experi-

ments) that POFBFS achieves achieves high reductions in taskmigrations

albeit at the cost of occasional slight deviations from perfect fairness.

Chapter 6 Here, we present a novel ERfair scheduling algorithm called ER-

fair Scheduling with Shutdown on Multiprocessors (ESSM), that attempts to

reduce system wide energy consumption by locally maximizing the pro-

cessor shut-down intervals while not sacrificing the ERfairness timing

constraints of the system.

Chapter 7 In this chapter, we discuss Safe-ERfair, a fair algorithmwith built-in

a priori overload handling mechanisms that detects and avoids possible

transient overloads in future using a given task arrival statistics.

Chapter 8 Finally, we conclude in this chapter. We summarize with a com-

parative study of the developed algorithms and also discuss the work in

progress, possible extensions and future work that can be done in this

area.

