CONTENTS

Tittle page	i
Dedication	iii
Certificate of Approval	V
Certificate by the Supervisors	vii
Declaration by the student	ix
Curriculum Vita	xi
Acknowledgement	xiii
Contents	XV
List of Symbols and Abbreviations	xxi
List of Tables	xxvii
List of Figures	xxxi
Abstract	xxxix

Chapter 1	Introduction and Literature Review	1
	1.1 Introduction to Thermo-Fluid Engineering	1
	1.2 Soft Computing and Its Scope	2
	1.3 Role of Soft Computing in Thermo-Fluid Engineering	4
	1.4 Scope of the Present Study and Literature Review	7
	1.4.1 Duct shape optimization through hybrid computing	7
	1.4.2 Stacking pattern optimization of multi-stream plate-fin heat exchanger	12
	1.4.3 Inverse estimation of boundary in heat conduction	16
	1.4.4 Diagnosis of counter-current two-phase flow	19
	1.5 Gaps in the Literature and Motivation behind the Selection of Problems	26
	1.6 Aims and Objective	28
	1.7 Contributions Made by the Scholar	29
	1.8 Organization of the Thesis	31
	1.9 Summary	31

Chapter 2 Duct Shape Optimization through Hybrid Computing

33

2.1 Introduction		33
2.2 Shape Optim	ization of a Continuous Planar Diffuser	34
2.2.1 Problem	n statement	34
2.2.2 Method	dology	35
2.2.2.1	Hydrodynamic calculation	35
	2.2.2.1.1 Governing equations	35
	2.2.2.1.2 Boundary conditions	36
	2.2.2.1.3 Grid pattern employed	37
	2.2.2.1.4 Near wall treatment	37
	2.2.2.1.5 Residual (imbalance) and convergence	39
2.2.2.2	GA implementation	41
	2.2.2.1 Direct selection of design variables	42
	2.2.2.2 Selection of design variables using polynomial equation	44
2.2.2.3	Implementation of the computational algorithm	45
2.2.3 Results		47
2.2.3.1	Optimum design of the duct based on discrete control points	49
2.2.3.2	Optimum design of the duct based on polynomial curves	54
2.2.3.3	Performance of a linear diffuser	55
2.3 Shape Optim	ization of a Two-Step Planar Diffuser	56
2.3.1 Problem	n formulation	57
2.3.2 Method	dology	58
2.3.2.1	Parameterization	58
2.3.2.2	Solution for hydrodynamics	59
2.3.2.3	Design of optimization algorithm	60
2.3.2.4	Combination of CFD softwares (Gambit and Fluent) with GA	61
2.3.3 Results	and discussions	61
2.4 Shape Optim	ization of a Continuous Planar Nozzle	69
2.4.1 Problem	n description	69
2.4.2 Tools a	and techniques used to solve the problem	70

	2.4.2.1 <i>PL</i> factor calculation	71
	2.4.2.2 Design of optimization algorithm	72
	2.4.2.2.1 Control points selected directly from GA	72
	2.4.2.2.2 Control points selected through polynomial equation	73
	2.4.2.3 Hybridization of CFD software and GA	74
	2.4.3 Results and discussion	75
	2.4.3.1 Optimum design based on control points selected directly from GA	76
	2.4.3.2 Optimum design based on polynomial curves	83
	2.5 Summary	84
Chapter 3	Optimization of Stacking Pattern for Multi-Stream Plate-Fin Heat Exchanger	85
	3.1 Introduction	85
	3.2 Methodology	85
	3.2.1 Problem formulation	85
	3.2.2 Algorithm for analysis of MSPFHE to calculate the objective function value	88
	3.2.3 Optimization	97
	3.3 Case Studies and Parameters	100
	3.4 Results and Discussion	101
	3.5 Summary	108
Chapter 4	Inverse Estimation of Boundary in Heat Conduction	111
	4.1 Introduction	111
	4.2 Problem Description	112
	4.2.1 Forward problem	113
	4.2.2 Inverse problem	113
	4.3 Solution Strategy	113
	4.3.1 Data collection	113
	4.3.2 Developed approaches	116
	4.3.2.1 Inverse regression model (also called approach 1)	116

	4.3.2.2 Multi-layer feed-forward neural network	118
	4.3.2.2.1 Approach 2: A thorough parametric study	118
	4.3.2.2.2 Approach 3: A combined GA-NN	119
	4.4 Results and Discussion	120
	4.5 Summary	139
Chapter 5	Diagnosis of Counter-Current Two-Phase Flow	141
	5.1 Introduction	141
	5.2 Experiments	142
	5.2.1 Experimental setup	142
	5.2.2 Experiment procedure	145
	5.2.3 Measurement techniques through probe	146
	5.2.4 Obtained flow patterns	149
	5.3 Statistical Analysis of Probe Signals	151
	5.4 Flow Regime Classification	157
	5.4.1 Methodologies for classification	157
	5.4.1.1 Classifier 1	159
	5.4.1.2 Classifier 2	163
	5.4.2 Results for flow regime classification	167
	5.5 Flow Regime Predictions	175
	5.5.1 Non-linear mapping for objective identification of flow regime	175
	5.5.1.1 Approach 1: A GA-tuned Multi-Layer Feed- Forward NN (GA-MLFFNN)	176
	5.5.1.2 Approach 2: A GA-tuned Multi-Layer Radial Basis Function NN with Entropy based Clustering (GA- MLRBFNN-EC)	179
	5.5.1.3 Approach 3: A GA-tuned Multi-Layer Radial Basis Function NN with Fuzzy C-Means Clustering (GA- MLRBFNN-FCMC)	183
	5.5.2 Results related to flow regime prediction	184
	5.5.2.1 Flow regime prediction through approach 1	186
	5.5.2.2 Flow regime prediction through approach 2	188
	5.5.2.3 Flow regime prediction through approach 3	191
	5.6 Summary	195

Chapter 6	Concluding Remarks and Scope for Future Work	197
	6.1 Concluding Remarks	197
	6.1.1 Duct shape optimization through hybrid computing	197
	6.1.1.1 Shape optimization of a continuous planar diffuser	197
	6.1.1.2 Shape optimization of a two-step planar diffuser	198
	6.1.1.3 Shape optimization of a continuous planar nozzle	199
	6.1.2 Stacking pattern optimization of multi-stream plate-fin heat exchanger	200
	6.1.3 Inverse estimation of boundary in heat conduction	201
	6.1.4 Diagnosis of counter-current two-phase flow	202
	6.2 Scope of the Future Work	204

References

207