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Introduction

“To invent, you need a good imagination and a pile of junk.” -

Thomas A. Edison

Human uses speech to communicate messages. The listener’s ability to com-

prehend speech and the amount of fatigue during listening depend on the intel-

ligibility and quality of speech. It is not always possible to ensure a noise free

background during talking. Electronic speech communication is no longer con-

fined to quieter, home or office environment. People today communicate speech

from places as diverse as train, airport, market place, factory, restaurant etc.

Each of this has different kind of noisy background and can include environments

such as a very noisy cockpit of a fighter aircraft. Electronic communication of

speech through a transmission media is influenced by the character of the media.

The transmission media introduces distortions and generate noisy speech signals.

Speech enhancement algorithms help to reduce background noise and improve the

perceptual quality or intelligibility of speech signals. In a moderately adverse envi-

ronment though speech is perceptible, but applications such as automatic speaker

recognition, distributed speech recognition, etc., drive the effort to build adaptive

noise suppression algorithms. The goal of speech enhancement varies according
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Figure 1.1: Application areas for Speech Enhancement

to specific applications, such as to boost the overall speech quality, to increase

intelligibility, and to improve the performance of voice communication devices [1],

[2]. Computational complexity and the trade off between the amount of noise sup-

pression and speech degradations of the adaptive algorithms are also of concern

for real world speech based applications. The insertion of speech enhancer into

various application areas are shown in Fig. 1.1.

1.1 Literature Review

This section presents reviews on the production of speech in humans, various

noise signals and different speech enhancement strategies.

1.1.1 Fundamentals of Speech Production

Speech is an acoustic waveform and is also known as a dynamic information-

bearing signal. The speech is generated in the mouth of the speaker due to sound

pressure. But the way of production and perception still remain a mystery to the

researchers [3]. Researchers need good knowledge of these processes to develop

efficient methods to represent and transform the acoustic waveforms to achieve

Figures/1-1.eps


Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.1 Literature Review 3

Figure 1.2: Speech Production System (from [4])

the desired accuracy. The basic human speech production mechanism consists

of, lungs, trachea, larynx, pharyngeal cavity, buccal cavity, nasal cavity, velum,

tongue, jaw, teeth and lips [3]. The respiratory subsystem of the mechanism build

up with the help of lungs and trachea. When the air is expelled from the lungs into

the trachea, this subsystem acts as the energy source for speech waveform. The

resulting airflow passes through the larynx, which provides periodic excitation to

the system to produce the voiced, unvoiced, mixed, plosive, whisper and silence

waveforms [3]. The acoustic filter then shapes the generated waveform. The

articulators i.e. velum, tongue, jaw, teeth and lips, give the finer adjustments to

generate speech waveform [3]. The basic speech production system is shown in

Fig. 1.2.

1.1.2 Fundamentals of Noise Signal

In speech enhancement, the behavior of the noise is very crucial. Therefore,

an accurate noise model is important for the enhancers [5]. It is also important

how well an enhancer works with different types of noise having different statistical

and spectral properties. Based on the behavior and properties of the noise sources,

Figures/speech_prod.eps
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4 Introduction

noise can be classified as in Table 1.1. Examples of different noise types based on

source of noise is listed next.

Table 1.1: Classification of Noise based on various properties (from [5])

Structure Continuous / Impulsive / Periodic

Type of Interaction Additive / Multiplicative / Convolutive

Temporal behavior Stationary / Non-stationary

Frequency range Broadband / Narrowband

Signal dependency Correlated / Uncorrelated

Statistical properties Dependent / Independent

Spatial properties Coherent / Incoherent

• Background: additive in nature, usually uncorrelated with the signal and

present in various environment scenarios [5].

• Multi-talker: additive in nature, composed of single or multiple “competing”

speakers. The “cocktail party effect” is multi-talker babble noise with very

similar characteristics and frequency range to the speech signal of interest

[5].

• Impulse: slamming of doors, noise present in archived gramophone record-

ings [5].

• Non-additive: due to non-linearities of microphones, speakers and channel

distortion [5].

• Non-additive due to speaker stress: due to Lombard effect [6]. This results

in speech having different spectral properties as compared to clean speech, a

detailed summary of the changes in speech characteristics due to this effect

are given in [7].

• Correlated with the signal: reverberations and echoes [5].

• Convolutive: corresponds to convolution in time domain. Also, changes in

speech signal due to changes in room acoustics or changes in microphones

etc [5].
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• Multiplicative: due to fading in cellular channels [5].

1.1.3 Classification of Speech Enhancement Techniques

Speech enhancement techniques can be classified [5], [8] as shown in Table 1.2.

Table 1.2: Speech enhancement processing strategies (from [5])

Number of input channels One / Two / Multiple

Domain of processing Time / Frequency / Time-Frequency

Type of algorithm Non-adaptive / Adaptive

Additional constraints Speech production / Perception

The speech signal usually captured from single or multi-channel microphones

and various types of noise can make speech enhancement algorithms difficult to

deal with. The single channel microphone is a cost effective solution whereas the

dual microphone approach is a costly solution to this speech enhancement problem.

Spatial analysis can give useful information in multi-channel input but further

increases the cost. The noise source is assumed to be statistically independent

and additive [3]. The base of such assumption is the fact that most environmental

noise is typically additive in nature [3]. The proposed methods in the present

thesis work will be based on single channel enhancement techniques.

1.2 Previous Approaches : An Outline

Over the past three decades, variety of speech enhancement methods have been

used to suppress background noise signals. Boll proposed spectral subtraction [9],

Virag tackled the problem by utilizing masking properties of the human auditory

system [5], Knecht et al. proposed noise reduction by artificial neural networks

[10] and Dahl et al. used microphone array to suppress the car noise [11]. From the

point of view of the number of microphones considered, the first two algorithms

are single channel the other two are multi-channel approaches.

For single channel approaches, the [9]-[13] are shown to be very effective for

the noise suppression. The Gaussian modeling of both speech and noise spectral
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6 Introduction

components have been reported and was successfully combined with the Minimum

Mean Square Error (MMSE) estimator in speech enhancement systems [12], [13].

But this approach is limited to the large Discrete Fourier Transform (DFT) frames

[12], [13] where the span of correlation of the signal under test is much shorter than

the DFT frame length. The pdf of speech in the time domain and in the frequency

domain is much better modeled by a Laplacian or a Gamma distribution rather

than a Gaussian [14]-[18]. In past decade, extensive research on non-Gaussian

modeling of speech samples has been reported [14]-[18]. The work in [15], [16],

are MMSE based estimation using Laplacian and the Gamma modeling of speech

and noise. However the method in [16], uses the fixed distribution parameters

of the Gamma modeling. This indeed limits the application in general cases.

The main reason is that the derivations of the MMSE estimate of the magnitude

spectrums are computationally expensive. Alternative solutions were also explored

in [17]-[20]. In [17], the pdf of the amplitude and phase of the DFT coefficients

was approximated with a parametric function to derive joint MAP estimator.

Martin et al. [18] use the super-Gaussian speech priors based MMSE estimation to

estimate magnitude-squared DFT Coefficients. In [19], statistical speech feature

enhancement in the cepstral domain is presented. The algorithm exploits joint

prior distributions in the clean speech model. A noncausal estimator for the a

priori SNR is proposed in [20]. A multi-band spectral subtraction with adjusting

subtraction factor is given in [21]. E. Zavarehei et al. enhances the speech using

Kalman Filtering for restoration of short time DFT trajectories [22]. In [23],

the corrupted cepstrum is assumed to follow the Gaussian mixture as is the case

with the clean spectrum. The non-linearity imposed on the clean spectrum pdf

is approximated by a Taylor series. Extension of this work to model space is

presented in [24]. The efficient MAP [25] and Maximum Log-Likelihood ratio [26]

techniques require rather long adaptation data in order to obtain good estimates

for the modification of the clean speech model set. In [27], work on multiple

statistical models for soft decision in noisy speech enhancement is presented.

The Discrete Cosine Transform (DCT) has been found to perform better than

the DFT [28] in speech enhancement because of its higher speech energy com-

paction and faster implementation than DFT [28], [29]. The amplitude estimation

is then obtained by the Gaussian distribution assumption for both the noise and
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clean speech signal. However in [29], for DCT spectra, the Laplacian distribu-

tion is shown to be more effective than the Gaussian distribution. In [30], Gazor

et al. also investigated the clean speech signal’s distribution by Karhunen-Loeve

Transform and DCT. The statistics of DCT coefficients of the clean speech signal

are shown to be similar to Laplacian pdf excluding silence intervals [30]. This is

analogous to the pdf of the DCT coefficients of image signals in [31]. But the

DCT has some inherent drawbacks such as it is not shift invariant, not noise ro-

bust, compared to DFT, it is also not cyclic and the transformation matrix is

not Vandermonde. Independent Component Analysis (ICA) have also been used

in separating original independent source signals from the observed mixed signals

[32]. Jong et al. have extracted speech features by using ICA and Gabor filter

[32] and used those features with MAP estimation for speech enhancement. In

[33], the environmental noise corrupted speech signals were taken using array of

microphones. Rosca et al. tackled the problem where parts of the time-frequency

content of the speech signal are missing [34]. Speech enhancement method using

ICA and delay-sum beamforming is presented in [35]. In [36], a single channel al-

gorithm is proposed with the Wiener filter and the ICA technique. Various other

approaches such as hidden markov modeling [37], signal subspace methods [38]

and wavelet based methods [39]-[41] have also been proposed.

Wavelets are used to analyze different types of signals [39]-[41]. The Wavelet

Transform are used to separate the speech signal and noise components efficiently.

The speech wavelet coefficients are localized, but the noise coefficients are dis-

tributed in nature. Therefore the energy of the speech signal will be limited to

few number of coefficients than the noise. The magnitude of the noise wavelet co-

efficients are then suppressed by different thresholding schemes and the remaining

coefficients will be representing the speech signal data. The transform can then

be inverted to reconstruct the speech signal [42]-[44]. The main problem with the

Discrete Wavelet Transform (DWT) is that it is not translation invariant. There-

fore, if the test signal is displaced by one sample then the corresponding wavelet

coefficients do not displace by the same. The shape of the reconstructed signal will

depend on the amount of signal translation. The orthonormal wavelets has been

devoted to analyze their suitability on speech signals in very few literature due

to their inherent complexities [42], [43]. The wavelet packet expansions [44] have
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8 Introduction

also become very popular in the signal processing domain. The original paper on

best basis search [45] exploited the fact that 1-D wavelet packet bases [44] and

local cosine bases [46] can be organized on a single dyadic tree. This work [45] is

proposed using an entropy based cost function. Since then, a number of papers

have proposed different criteria, e.g., Minimum Description Length principle [47],

[48], Bayesian estimation [49], and rate-distortion framework [50]. To address the

issues of the entropy based basis search [51], new class of algorithms have been

studied in [52] and also in [53].

Several subspace filtering approaches have also been studied that uses Singular

Value Decomposition (SVD) [54]-[56]. This approach requires the estimation of

the dimensions of the clean speech signal and the information of the noise. Like

spectral subtraction method, this technique also assumes that the noise is additive

and uncorrelated with the clean speech signal. The SVD technique enhances a

noisy signal by keeping a few of the singular values and ignores those which are

associated with the noise signal. The enhanced signal is reconstructed from the

reduced rank matrix. There are three frequently cited features to justify the

success of the SVD [54]: (i) the information on the data generating mechanism is

completely contained in certain subspaces of the data matrix, (ii) the complexity

is given by the approximate rank of the data matrix and (iii) since the data are

corrupted by additive noise it is expected that the SVD has a certain noise filtering

effect due to low rank speech model. The minimum variance estimation gives the

best linear estimate of the clean data [54], [57]. The superior noise reduction

capabilities of subspace filtering are confirmed by several studies by least squares

estimate [58] and with the principle optimization criteria [55].

1.3 Objectives and Scope

The investigation carried under this dissertation attempts:

• to design novel speech enhancement algorithms for miscellaneous single chan-

nel recording of speech signals and noise types.

• to exploit special properties of LGW in speech enhancement through an

analysis - synthesis frame work.
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• to use Bayesian Marginal Statistics, Bayesian Joint Statistics and Speech

Presence Uncertainty in LGW frame work for speech enhancement task.

• to study the performance of the proposed methods against various objective,

subjective and composite measures and compare with existing methods.

• to use the proposed method in ASR application and find its suitability

through comparison of performances.

1.4 Contributions Made

This dissertation considers the problem of speech enhancement when only a

single microphone is used and when the statistics of the interfering noise and

speech are not available a priori. Thus it seeks to address a deficiency of many

current enhancement techniques and looks toward a system which would have

application in the real world. This dissertation focuses on LGW based LT-SSA

estimators using the MAP criterion. The contributions are listed below:

1. Combination of LGW, SIRPs and SPU have been introduced for background

noise reduction.

2. LGW and LT-CMS has also been used to reduce the effects of both telephone

channel and handsets.

3. The pdf of the filtered speech coefficients in each scale of decomposition is

modeled with GLD and corresponding shrinkage rule is proposed by MAP

estimator from the statistics of the decomposed noisy speech signals.

4. Circularly Symmetric Probability Density Function (CSpdf) related to the

family of SIRPs has been introduced to exploit the inter-scale dependency

between the coefficients and their parents and corresponding joint shrinkage

estimators are derived by MAP estimation theory.

5. The inter-scale noise variance of the coefficients is kept constant which gives

closed form solution.
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6. Consideration of SPU estimator is another contribution to the proposed

estimator. This idea refines the estimate of the magnitudes by scaling them

by the SPU probability.

1.5 NOIZEUS : Noisy Speech Corpus for Eval-

uation of Speech Enhancement Algorithms

Over the past three decades, different noise suppression algorithms have been

used to improve the speech enhancement performance. But, it still remains a

challenging task to find a reliable speech enhancement algorithm, where the noise

level and noise characteristics are constantly changing [59], [60]. Comparison

between various algorithms has also been not possible due to lack of common

noisy speech database, different noise types used and different testing methodology

[59], [60]. Therefore, it is impossible for researchers to compare the objective and

subjective performance of different noise suppression algorithms [59], [60].

NOIZEUS database [61] was developed to facilitate comparison of different

speech enhancement algorithms. The database contains 30 IEEE sentences [62],

corrupted by eight different noises at four different SNRs (as in Table 1.3). The

noise signals were taken from the AURORA database that includes suburban train,

babble, car, exhibition hall, restaurant, street, airport and train-station noise. The

sentences were produced by three male and three female speakers. The way thirty

sentences were selected from the IEEE database ensures inclusion of all phonemes

in the American English language [61]. The sentences were originally sampled at

25kHz and then down sampled to 8kHz [61]. Noise signals are artificially added to

the speech signal as in [61]: The Intermediate Reference System (IRS) [61] filter

is independently applied to the clean and noise signals. The IRS filter is actually

a band pass filter whose frequency response corresponds to that for analog part

of the transmitter of telephone equipment. The active speech level of the filtered

clean speech signal is first determined using the method B of ITU-T P.56 [63]. A

noise segment of the same length as the speech signal is randomly cut out of the

noise recordings, appropriately scaled to reach the desired SNR level and finally

added to the filtered clean speech signal. The long-term spectra of the above
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Table 1.3: List of sentences used in NOIZEUS Database(from [61])

Filename Speaker Gender Sentence text
sp01.wav CH M The birch canoe slid on the smooth planks.
sp02.wav CH M He knew the skill of the great young actress.
sp03.wav CH M Her purse was full of useless trash.
sp04.wav CH M Read verse out loud for pleasure.
sp05.wav CH M Wipe the grease off his dirty face.
sp06.wav DE M Men strive but seldom get rich.
sp07.wav DE M We find joy in the simplest things.
sp08.wav DE M Hedge apples may stain your hands green.
sp09.wav DE M Hurdle the pit with the aid of a long pole.
sp10.wav DE M The sky that morning was clear and bright blue.
sp11.wav JE F He wrote down a long list of items.
sp12.wav JE F The drip of the rain made a pleasant sound.
sp13.wav JE F Smoke poured out of every crack.
sp14.wav JE F Hats are worn to tea and not to dinner.
sp15.wav JE F The clothes dried on a thin wooden rack.
sp16.wav KI F The stray cat gave birth to kittens.
sp17.wav KI F The lazy cow lay in the cool grass.
sp18.wav KI F The friendly gang left the drug store.
sp19.wav KI F We talked of the sideshow in the circus.
sp20.wav KI F The set of china hit the floor with a crash.
sp21.wav SI M Clams are small, round, soft and tasty.
sp22.wav SI M The line where the edges join was clean.
sp23.wav SI M Stop whistling and watch the boys march.
sp24.wav SI M A cruise in warm waters in a sleek yacht is fun.
sp25.wav SI M A good book informs of what we ought to know.
sp26.wav TI F She has a smart way of wearing clothes.
sp27.wav TI F Bring your best compass to the third class.
sp28.wav TI F The club rented the rink for the fifth night.
sp29.wav TI F The flint sputtered and lit a pine torch.
sp30.wav TI F Let’s all join as we sing the last chorus.

noises are given in [64]. The noise signals were added to the speech signals at

SNRs of 0dB, 5dB, 10dB, and 15dB.
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1.6 Objective Quality Assessment

The accurate way to evaluate speech quality is through subjective listening

tests [60]. But subjective evaluation tests are performed under stringiest condi-

tions which are costly and time consuming [60]. For that reason, the objective

measures with high correlation are used to predict speech quality. Many objec-

tive speech quality measures have been proposed in the past [65]. As pointed

out in [60], these measures were developed for the distortion evaluation purpose

introduced by speech codecs and/or communication channels. Therefore, it is ill-

defined whether the objective measures are suitable for quality evaluation of the

enhanced speech or not [60]. The distortion types can be broadly divided into two

categories [60]: (i) the speech distortion and (ii) noise distortion. The listeners

are mostly influenced by the speech distortion when making judgments of overall

quality [60]. But no such objective measure is available to correlate with either

distortion type or with the overall quality of enhanced speech [60]. The objective

quality measures represent distortions between the clean and enhanced speech

signals and are classified into time and frequency domain measures. In the time

domain, SNR and segmental SNR measure are used to calculate the distortions

between the clean and enhanced speech signals. In the frequency domain, spectral

distortion and spectral envelope distortion are used to calculate the distortions

between the clean and enhanced speech signals. After comparison of the different

objective measures in [66], the conclusion was (i) frequency domain measures are

better than time domain measures, (ii) spectral envelope measures are better than

spectral measures in the frequency domain, and (iii) Linear Predictive Cepstral

(LPC) distance measures are best among the several LPC based spectral envelope

calculating methods. In this thesis, three such quality measures are used which

are commonly used to evaluate the speech quality after enhancement [60].

1.6.1 Segmental SNR (SSNR) Measure

The correlation of SNR with subjective quality is very poor. We can not use

SNR as a general objective measure of speech quality [67]. We therefore consider

the frame based SNR [67]. The measure (dSEGSNR) is defined as in [67]:
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dSEGSNR =
10

M

M−1
∑

i=0

log

∑Ni+N−1
n=Ni

s2φ(n)
∑Ni+N−1

n=Ni
[sd(n)− sφ(n)]2

(1.1)

where, M is the total no. of frames, sφ is clean signal, sd is enhanced signal, Ni

is the data length of of a particular frame andN is the total data length of the given

signal. As the frames containing SNRs above 35dB do not reflect large perceptual

differences, then those SNRs can be replaced with 35dB [67]. For silence periods,

the SNR values can be negative since signal energies are small. These frames do

not contribute perceptually. Therefore, lower threshold can be set to provide a

bound on frame based SNR. We have selected −10dB as suggested in [67]. This

measure is easy to implement, have low computational complexity and can provide

indications of perceived speech quality for a specific waveform preserving speech

system. Unfortunately, when used to evaluate transmission systems SSNR shows

little correlation to perceived speech quality. This measure is also sensitive to a

time shift, and therefore require precise signal alignment. The higher the value of

dSEGSNR, the better is the performance of the speech enhancer.

1.6.2 Weighted Spectral Slope (WSS) Measure

The WSS measure by Klatt is based on an auditory model in which 36 overlap-

ping filters of progressively larger bandwidth are used to estimate the smoothed

short-time speech spectrum. The measure finds a weighted difference between the

spectral slopes in each band. The magnitude of each weight (wa) reflects whether

the band is near a spectral peak or valley, and whether the peak is the largest in

the spectrum. A per-frame measure in decibels is found as [68]:

dWSS(j) = Kspl(K − K̂) +
36
∑

k=1

wa(k)(sφ(k)− sd(k))
2 (1.2)

where, whereK and K̂ are related to overall sound pressure level of the original

and enhanced utterances, and Kspl is a parameter which can be varied to increase

overall performance. Noise affects the speech time contour and the correspond-

ing frequency content. Weighted Spectral Slope is better measures of perceptual

speech quality as they represent deviation in the spectrum. The lower the value
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of dWSS, the better is the performance of the speech enhancer.

1.6.3 Log Area Ratio (LAR) Measure

LAR measure is calculated from the differences of pth order LP reflection co-

efficients for the clean rφ(j) and enhanced rd(j) signals for a given frame j [67].

The measure (dLAR) is defined as follows [67]:

dLAR =

∣

∣

∣

∣

1

M

M
∑

i=1

[

log
1 + rφ(j)

1− rφ(j)
− log

1 + rd(j)

1− rd(j)

]2∣
∣

∣

∣

1
2

(1.3)

where, M is the order of the LPC analysis. LAR measure is known to be

significantly better correlated with human perception but still relatively simple to

implement. One of the critical advantage is that they are less sensitive to signal

misalignment. The lower the value of dLAR, the better is the performance of the

speech enhancer.

1.7 Subjective Quality Assessment

1.7.1 Perceptual Evaluation of Speech Quality (PESQ) Mea-

sure

PESQ measure is the most complex objective measure [69], [70] to compute

and is recommended by ITU-T for speech quality assessment of 3.2 kHz handset

telephony and narrow-band speech codecs [71], [72]. PESQ score is computed

as a linear combination of the average disturbance value Dind and the average

asymmetrical disturbance values Aind as mentioned in [69], [70]:

PESQ = a0 + a1Dind + a2Aind (1.4)

where, a0 = 4.5, a1 = −0.1 and a2 = −0.0309 [69], [70]. The parameters were

optimized for speech processed through networks and not for speech enhanced by

noise suppression algorithms [69], [70]. To correlate the PESQ measure with all

three objective quality measures, the undertaken in this investigation also consid-
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ered optimized PESQ measure for each of the three rating scales by choosing a

different set of parameters for each rating scale as in [69], [70]. Three different

modified PESQ measures are used to predict signal distortion, noise distortion

and overall speech quality. They are: (i) the speech signal alone using a five-point

scale of signal distortion (SIG), (ii) the background noise alone using a five-point

scale of background intrusiveness (BAK), and (iii) the overall effect using the scale

of the Mean Opinion Score (MOS) (OVRL) [1 = bad, 2 = poor, 3 = fair, 4 =

good, 5 = excellent] [69], [70]. The simulation codes are taken from [73]. All

perceptual measures report outstanding quality correlations over large range of

degradations. PESQ, in particular, is standardized as ITU-T P.862 in 2003 and

is widely acknowledged as the state-of-the-art with reported quality correlation

at 0.95. In fact, perhaps at the absence of reliable intelligibility measure, ITU-T

has formed a study group (period : 2005-2008) to extend PESQ for intelligibility

assessment.

1.7.2 Composite Measure

These measures were obtained by combining the objective measures. Com-

posite measures are used to correlate with distortions related to speech/noise and

overall speech quality [70]. It is derived by utilizing multiple linear regression anal-

ysis in [70]. We have applied the same concept for signal distortion (CorrSIG),

for noise distortion (CorrBAK), and for overall speech quality (CorrOVRL). The

simulation codes are taken from [73]. Two figures of merit are computed for the

objective measures. The first one is the correlation coefficient (Pearson’s correla-

tion) between the subjective quality ratings Sd and the objective measure Od, and

is given by [70]:

ρ =

∑

d(Sd − Sd)(Od − Od)

[
∑

d(Sd − Sd)]1/2[
∑

d(Od − Od)]1/2
(1.5)

where, Sd and Od are the mean values of Sd and Od respectively. The second

figure of merit is an estimate of the standard deviation of the error, and is given

by [70]:
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σ̂e = σ̂d

√

1− ρ2 (1.6)

where, σ̂d and σ̂e are the standard deviation of Sd and computed standard

deviation of error respectively. A smaller value of σ̂e indicates that the objective

measure is better at predicting subjective quality [70].

Two parametric (linear regression) and nonparametric regression analysis tech-

niques were used [70] as third merit. The nonparametric regression was based on

Multivariate Adaptive Regression Splines (MARS) analysis [70]. The MARS mod-

eling technique is data driven and derives the best fitting function from the data.

The MARS modeling is used to locally fit the data in a region by spline functions.

Using the basis functions, it generates a global model after combining the data

regions. The simulation codes are taken from [70]. The same five point scale is

taken under consideration and to evaluate the measure. They are [1 = bad, 2 =

poor, 3 = fair, 4 = good, 5 = excellent].

1.8 Organization of the Thesis

The thesis is organized into six chapters.

Chapter 2 contains the proposed framework and formulation by describing

importance of LGW Filter, their frequency domain representation followed by

design specifications in the current context, telephone channel and handset effect

reduction, followed by ambient noise reduction, and estimator design using the

proposed technique. The implementation details are also given in terms of block

diagram and pseudo code. The objective, subjective and composite measures for

eight different noise conditions with different SNR levels against seven different

existing algorithms are discussed in details.

Chapter 3 contains the proposed framework and formulation that use joint

subband statistics, signal analysis by LGW filters, Bayesian JSC with constant

inter-scale variance. The implementation details are also given in block diagram

and pseudo code. The objective, subjective and composite measures are shown

against different existing algorithms, proposed marginal and Bivariate estimator.

Chapter 4 contains the proposed framework and formulation by describing
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performance analysis of LGW with Bayesian JSC with SPU in constant inter-

scale variance model estimator. The implementation details are given in block

diagram and pseudo code. The performance evaluations are discussed in details

in terms of objective, subjective and composite measures.

Chapter 5 contains the proposed framework and formulation in Automatic

Speech Recognition contexts. The existing and proposed marginal as well Bivari-

ate estimators are evaluated against four different noise conditions with different

SNR levels.

Chapter 6 contains the conclusion and provides some directions for future work.
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