List of Figures

Figure No.
Fig. 1.1 An Undirected Reliability Graph of a Network
Fig. 1.2 A Directed Reliability Graph of a Network 5
Fig. 1.3 Strongly Connected Components 5
Fig. 1.4 Weakly Connected Components 5
Fig. 1.5 A Mixed Reliability Graph of a Network 6
Fig. 1.6 Adjacency Matrix 6
Fig. 1.7 Pictorial Representation of Network Reliability Methodology 9
Fig. 2.1 Block Diagram of Technique for Evaluating g-Reliability 31 using SDP Approach (Existing)
Fig. 2.2 Block Diagram of Technique for Evaluating g-Reliability $\quad 32$ using SDP Approach (Proposed)
Fig. 2.3 8 Node12 Link ARPA Network 34
Fig. 2.4 The Adjacency Matrix of 8 Node12 Link ARPA Network 35
Fig. 2.5 Flowchart of the Proposed Approach 38
Fig. 2.6 Reliability Graph of ARPA Communication Network 40
Fig. 2.7 Sub-graphs of Figure 2.6 after Removal of Respective Link 45 Cutsets

Fig. 2.8-2.14 Case Networks Considered in the Thesis for 2-, g-, and k - 45-46
Terminal Path/Cut Sets Enumeration and Reliability Evaluation

Fig. 2.15 A Case Network of 17 Node 21 Link WDN 48
Fig. 2.16 A Case Network of 18 Node 31 Link WDN 49
$\begin{array}{lll}\text { Fig. 3.1 } & \begin{array}{l}\text { Block Diagram of Techniques for Evaluating Reliability } \\ \text { Measures using SDP Approach (Existing) }\end{array} & 53\end{array}$
Fig. 3.2 Block Diagram of Techniques for Evaluating Network 53
Reliability Measures using SDP Approach (Proposed)
Fig. 3.3 An Undirected Network (6 Nodes and 9 Links) 56
Fig. 3.4 Layout of IIT Kharagpur LAN 63
Fig. 3.5 Layout of Hostel Area of IIT Kharagpur LAN 65
Fig. 3.6 Plot of Number of Terms Required for Reliability Evaluation 66 of Figure 3.5
Fig. 4.1 A Flow Graph of Comparative Study 69
Fig. 4.2 Case Networks Tested on Analysis 72-73

Fig. 4.3 6 Node 9 Link Case Network Tested for k-Terminal Reliability Analysis

Fig. 5.1 Network of 6 Nodes and 11 Links with $C_{\max }=15$ units 87
Fig. 5.2 Network of 7 Nodes and 15 Links 92
Fig. 5.3 Sub-graphs of Figure 5.1 after Removal of Respective SCG for $\quad 96-97$ $W_{\text {min }}=10$ units

Fig. 5.4 Network of 13 Nodes and 22 Links 99
Fig. 5.5 Network of 20 Nodes and 30 Links 99
Fig. 5.6 Comparison of Subsets Generated for Fig. 5.4 101
Fig. 5.7 Comparison of Subsets Generated for Fig. 5.5 101
Fig. 6.1 Example Network of 4 Nodes and 5 Links 107
Fig. 6.2 Flowchart of the Proposed Approach 112
Fig. 6.3 Complete Mesh Connected Network of 5 Nodes and 10 Links 113
Fig. 6.4 A Connected Network Layout of 5 Nodes and 6 Links 114
Fig. 6.5 Selection Plot of Good Chromosomes 118
Fig. 6.6 Resultant Network Layout of 5 Nodes and 6 Links 119

List of Tables

Table No. Topic Page No.
Table 2.1 Illustrating Node-Fusion Technique 35
Table 2.2 Comparison of g - Minimal Cutsets with Spanning Trees and 47Disjoint Terms
Table 2.3 Node Link Matrix of Seventeen Nodes Unsaturated Network 47
Table 3.1 Comparison of g - and 2-Terminal Minimal Cutsets with 61
Spanning Trees and Pathsets
Table $3.2 \quad k$-Terminal Reliability Evaluation using k-Minimal Cutsets of 62Figure 2.14
Table 3.3 Description of Nodes in Figure 3.4 64
Table 3.4 Computational Results for k-, and g-Terminal Reliability of 66Hostel Area IIT-KGP-LAN Network Shown in Figure 3.5
Table 4.1 Computational Results for 2-Terminal Reliability of 24-Case Networks (Directed) Shown in Fig. 4.2
Table 4.2 Computational Results for g-Terminal Reliability of 24-Case 74-75 Networks (Directed) Shown in Fig. 4.2
Table 4.3 Computational Results for 2-Terminal Reliability of 24-Case 75 Networks (Undirected) Shown in Fig.4.2
Table 4.4 Computational Results for g-Terminal Reliability of 24-Case 76
Networks (Undirected) Shown in Fig.4. 2
Table 4.5 Computational Results for k-Terminal Reliability of 77-78 (Directed) Network Shown in Fig.4.3
Table 4.6 Computational Results for k-Terminal Reliability of 78-79(Undirected) Network Shown in Fig.4.3
Table 5.1 Minimal Cutsets for the Network of Figure 5.1 87
Table 5.2 Enumerating SCGs of a Particular Order from a Set of 89-90Numbers
Table 5.3 Algorithmic Steps to Solve Illustrative Example 95
Table 5.4 Results and Comparison for the Network in Fig. 5.4 100
Table 5.5 Results and Comparison for the Network in Fig. 5.5 100
Table 6.1 A Typical Link Type Table 105
Table 6.2 A Typical Connection Matrix Table for Network Shown in 113Fig. 6.3
Table 6.3 A Typical Length of the Links Table for Network Shown in 113 Fig. 6.3
Table 6.4 A Typical Link Type Table 114
Table 6.5 A Typical Desired Capacity Table for Network Shown in Fig. 114 6.3
Table 6.6 Minimal Cutsets for the Network in Figure 6.4 (a) 115
Table 6.7 An Initial Population of Size Ten 116
Table 6.8 Crossover Operation 117
Table 6.9 New Crossover Generation 118
Table 6.10 Mutation Operation for Reproduction 119

List of Notation \& Abbreviations

(Alphabetical Order)

A	Set of Directed Edges in G
$A C$	Accepted Chromosomes Copies
C	A Cutset or a Subset of Cut
$C_{m a x}$	Maximum Flow Capacity of the Network
$C A$	Cut-capacity Column Vector
$C R R$	Capacity Related Reliability
$C(x)$	Total Cost of Network Design
$C R R$	Capacity Related Reliability
$C R R(x)$	Reliability of Network Design
$C R R_{N e t}$	Desired Minimum Network Reliability Constraint
$c_{i j}$	Link Cost/Length
$c_{i j(m a x)}$	Maximum Cost/Length
$C P$	Composite Path
$C P U$	Central Processing Unit
E	Set of Vertices in G
G	Reliability Graph
$G A$	Genetic Algorithm
i, j	Index
k	Type or Option of the Link
$l_{i j}$	Number of Connections in a Single Type of the Link
L	Set of Possible Links)
$M V I$	Set of Possible Links
N_{s}	Multiple Variable Inversion
N	Current Capacity of Network
$N F$	Total Number of Nodes in G
$N P O C$	Normalized Fitness Value
$N S P$	Non Path or Cutset
$P O C$	Non Series Parallel
R_{l}	Path or Cutset
$S C$	Reliability of Link Option
$S C G$	Subset Cut
$S D P$	Subset Cut Group
$S P$	Sum of Disjoint Product
s, t	Series Parallel
$S V I$	Source, Terminal Nodes
$T R$	Single Variable Inversion
V	Terminal Reliability
$W_{m i n}$	Set of Edges in G
x	Desired Flow Through Network
$x_{i j}$	Binary String that can be Used as a Chromosome
	Link Connection Between Two Nodes i and j

