List of Figures

Fig. 1.1: System failure probability 'q' as a function of the degradation level 5
Fig. 1.2: Classification of availability definitions
Fig. 3.1: State transition diagram for replacement/overhaul at random failure policy
Fig. 3.2: State transition diagram for minimal repair at random failure policy 42
Fig. 3.3: State transition diagram for condition based repair policy
Fig 3.4: Cross sectional view of a typical truck tire
Fig. 4.1: State transition diagram for the condition based maintenance and repair policy
Fig. 5.1: State transition diagram for the condition based minimal and major PM policy
Fig.5.2: Variation optimum availability as a function τ_1 and τ_2
Fig. 5.3: Variation optimum total cost as a function τ_1 and τ_2
Fig. 5.4 Variation of threshold deterioration stages (k_1 & k_2) with increasing τ_1 (at $\tau_2 = 40$)
Fig. 5.5: Optimum availability as a function τ_1 , and τ_2
Fig. 5.6: Optimum total cost as a function of τ_1 , and τ_2
Fig. 5.7: Effects of washing and Overhaul on compressor efficiency
Fig. 5.8: State transition diagram for periodic online washing and condition based offline washing policy
Fig. 6.1: State transition diagram for the condition based inspection and maintenance policy
Fig. 6.2: Steps in the Optimization procedure
Fig. 7.1: Markov Chain for machine failure repair process
Fig. 7.2: Relationship between number of repair crews and system availability 168
Fig. 7.3: Relationship between number of repair crews and net benefits of the system
Fig. 7.4: Relative improvements in availability
Fig. 7.5: Relative improvements in net benefits

List of Tables

Table 3.1: Maintenance actions in different models	43
Table 3.2: Solution for the Hypothetical example	52
Table 3.3: Results of the case study on truck tire retreading	60
Table 4.1: Maintenance actions at different stages of the system	65
Table 4.2: Optimum condition based maintenance policies	82
Table 4.3: Comparison of time based and condition based maintenance policies	82
Table 5.1: Maintenance actions at different stages of the system	92
Table 5.2: the possible values for the important quantities	93
Table 5.3: the possible number of combination between $(k-\tau_2)$ and $(k_2-\tau_2)$	
Table 5.4: the possible number of combination between (k2- τ_1 -1) and (k1- τ_1)	93
Table 5.5: Applicable combinations of important quantities $(k-\tau_2)$, $(k_2-\tau_2)$, $(k_2-\tau_1-1)$, and $(k_1-\tau_1)$	94
Table 5.6: Optimal maintenance policies for the hypothetical example problem	113
Table 5.7: Optimum maintenance policy when mean PM time and costs are proportional to Maintenance effectiveness	117
Table 5.8: Optimal washing schedule for the illustration	126
Table 6.1: Availability maximization	148
Table 6.2: Total cost minimization	148
Table 7.1: Availability and Net-benefit for various number of repair crews 'c'	162
Table 7.2: Comparison of optimal results with and without joint repair	170
Table 7.3: Optimum 'c' and 'N' values which satisfies the required availability	174
Table 7.4: Best combination of repair crews, and number of units that satisfies the required availability (99.99%)	178

Table of Abbreviations

Abbreviation	Description
AMS	Automated manufacturing systems
CBM	Condition based maintenance
CM	Corrective maintenance
CT	Cycle time
CTMC	Continuous time Markov chain
DF	Deterioration failure
EDT	Expected down time
EUT	Expected up time
FPM	Failed preventive maintenance
IFR	Increasing failure rate
IPM	Imperfect preventive maintenance
ITRA	International tire and rubber association
JIT	Just in time
MC	Markov chain
MDT	Mean down time
MTBF	Mean time between failures
MTBI	Mean time between inspections
MTTR	Mean time to repair
MW	Mega watt
PM	Preventive maintenance
PPM	Perfect preventive maintenance
PR	Preventive replacement
RF	Random failure
RLD	Reliability logic diagram
ROI	Return on investment
TBI	Time between inspections
TBPM	Time between preventive maintenance
TC	Total cost
TRIB	Tire retread information bureau

