List of Symbols

Symbo	ls Name	Units
$\mu_0 H$	Magnetic flux density	Tesla
H	Magnetic field strength	Oersted
ΔS_M	Isothermal entropy change	J/Kg.K
ΔT_{ad}	Adiabatic temperature change	Kelvin
$C_{P,H}$	Heat capacity at const. pressure and magnetic field	J/Kg.K
2θ	X-Ray diffraction angle	Degree (°)
θ_D	Debye temperature	Kelvin (K)
ρ	Resistivity	Ω.cm
$ ho_0$	Resistivity without magnetic field	Ω.cm
$ ho_{H}$	Resistivity under magnetic field	Ω.cm
$ ho_{PI}$	Resistivity in paramagnetic insulating state	Ω.cm
$ ho_{FM}$	Resistivity in ferromagnetic metallic state	Ω.cm
χ	Magnetic susceptibility	dimensionless
S_{abs}	Absolute thermoelectric power	μV/K
S_{PI}	Thermopower in paramagnetic insulating state	μV/K
S_{FM}	Thermopower in ferromagnetic metallic state	μV/K
T_C	Curie temperature	Kelvin (K)
T_{MI}	Metal-insulator transition temperature	Kelvin (K)
g	Lande factor	dimensionless
М	Magnetization	emu/gm
M_{0}	Saturation magnetization	emu/gm
MR	Magnetoresistance	Relative
CMR	Colossal magnetoresistance	Relative
LFMR	Low field magnetoresistance	Relative
RCP	Relative cooling power	J/cm ³

Physical constants

Symbol	Quantity	Value	Units	
е	Electronic charge	1.60218x10 ⁻¹⁹	Coulomb	
K _B	Boltzmann constant	1.3807x10 ⁻²³	J/K	
μ_0	Vacuum Permeability	4πx10 ⁻⁷	J/Tesla	
μ_B	Bohr magneton	9.274x10 ⁻²⁴	J/Tesla	

Glossary of abbreviations

Abbreviation	Meaning
a.u.	Arbitrary Units
FWHM	Full Width at Half Maximum
XRD	X-ray diffraction
K	Potassium
Т	Temperature

ix

List of Figures

Chapter 1

Figure 1.1 The perovskite structure with *A*-ion at the center of cube, *B*-ions at the corners and Oxygen ions is between them. 2

Figure 1.2 Crystal structure of Rare-earth manganite perovskites (AMnO₃: A is the rare earth ion as La, Pr, Nd etc. 3

Figure 1.3 (a) Electronic energy levels of Mn^{3+} ion in manganite compound. In crystal field the Mn 3d level's degeneracy is lifted partially to form a doublet e_g state and a triplet t_{2g} state, **(b)** The 3d orbital of Mn ion in the octahedral site showing the orientation of e_g and t_{2g} state. Black dots represent the oxygen ions.

Figure 1.4 Possible magnetic structures of perovskite manganites. The circles represent manganese ions and the arrow indicates the direction of spin along z-axis. 7

Figure 1.5 Typical phase diagrams of La_{1-x}Sr_xMnO₃ and La_{1-x}Ca_xMnO₃ respectively.

Figure 1.6 Generation of **(a)** antiferromagnetic or **(b)** ferromagnetic effective interactions between the spins of manganese ions mediated by oxygen, depending on the orientation of Mn orbitals.

Figure 1.7 A typical resistivity vs. temperature curve of single crystalline $La_{0.7}Ca_{0.3}MnO_3$ thin film in zero magnetic film.

Chapter 2

Figure 2.1 Cryostat for electrical resistivity measurement between 10 and 300K under an external field up to 0.8Tesla. Vacuum shroud and radiation shields are not shown. 38

Figure 2.2 Electrical schematic for the resistivity measurement by dc technique between 10 and 300K. 38

Figure 2.3 (a) Schematic of the cryostat used for the measurement of ac susceptibility between 77 and 300K and **(b)** high temperature system (300K to 450K) 43

Figure 2.4 Electrical schematic of the ac susceptibility measurement. 44

Figure 2.5 (a) Schematic for cryostat arrangement and **(b)** electrical schematic used for the measurement of thermoelectric power between 50 and 300K. 48

Figure 2.6 Schematic diagram of the VSM used for magnetization measurement of manganites between (a) 77 and 300K and (b) 300 to 500K under magnetic field of 1 Tesla.

Figure 2.7 (a) Saddle point or optimum sample displacement, **(b)** M(H) curve of Nickel showing saturation magnetization at room temperature. 62

7

Figure 2.8 (a) M(H) curve of Nickel with different mass, **(b)** variation of output signal with mass of Nickel at a field of 4KGauss (points) and line shows the linearity between the two, **(c)** reproducibility of M(H) curves obtained in our VSM for Nickel pellets. 63

Chapter 3

Figure 3.1 Reactions governing the 'Pyrophoric' route synthesis procedure.

73

84

96

Figure 3.2 Flow chart for the preparation of monovalent (K) doped lanthanum manganites by 'Pyrophoric technique'. 73

Figure 3.3 Experimental (points) and refined (blue lines) XRD patterns for $La_{1-x}K_xMnO_3$ compounds. Vertical red lines indicate the positions of allowed Bragg reflections. The pink line curves at the bottom gives the difference between observed and calculated one. 77

Figure 3.4 SEM micrograph of $La_{1-x}K_xMnO_3$ compounds for compositions (a) x=0.05, (b) x=0.10 and (c) x=0.15.

Figure 3.5 AC susceptibility and estimation of Curie temperature of La_{1-x}K_xMnO₃ system.

Chapter 4

Figure 4.1 (a) Temperature dependence of electrical resistivity under zero (open symbol) and 0.8Tesla field (filled symbol), **(b)** Temperature dependence of MR at μ_0 H=0.8Tesla of La_{1-x}K_xMnO₃ system. 91

Figure 4.2 Schematic motion of a self-trapped electron that originates a lattice polaron.

Figure 4.3 (a) Slopes used to estimate Debye temperature (θ_D) from resistivity data, **(b)-(c)** best fit of the experimental data of La_{1-x}K_xMnO₃ samples with adiabatic small polaron model at zero and 0.8Tesla field respectively at T>T_{MI}, **(d)** best fit with non-adiabatic model at zero (open symbol) and 0.8Tesla (filled symbol) field respectively, **(e)** typical example of the relative deviation between the data and the fitted curves obtained respectively for adiabatic (\triangle) and non-adiabatic (\triangle) hopping model in the insulating region of La_{1-x}K_xMnO₃ (x=0.10) pellets.

Figure 4.4 (a) Single magnon process involving spin flip, (b) two amgnon process. 105

Figure 4.5 (a)-(b) Fitting with equation (4.15a), **(c)** deviation below ~ 100 K for x=0.05 sample using equation (4.15a), **(d)-(e)** fitting with equation (4.15b). 111

Figure 4.6 Low temperature minima (open symbols) in resistivity of $La_{1-x}K_xMnO_3$ pellets below ~50K and its field dependence at $\mu_0H=0.8Tesla$ (filled symbols). 114

Figure 4.7 Solid lines are low temperature resistivity minima calculated by **(a)** Coulomb blockade model, **(b)** electron-electron interaction model, **(c)** intergrain tunneling model. Points are the experimental data.

Figure 4.8 Solid lines are the resistivity of $La_{1-x}K_xMnO_3$ system calculated using two phase model (equation 4.19e) corresponding to the parameters indicated in table 4.7, **(a)** for $\mu_0H=0$ and **(b)** for $\mu_0H=0.8$ Tesla. Points are the experimental data. 125

xi

Chapter 5

Figure 5.1 Temperature dependence of absolute TEP of $La_{1-x}K_xMnO_3$ (x =0.05, 0.10 & 0.15) polycrystalline samples in zero field between 50 and 300K. 135

Figure 5.2 Fit to the TEP data of $La_{1-x}K_xMnO_3$ (x= 0.05, 0.10 & 0.15) samples for $T>T_C$ according to Mott's equation 5.4.

Figure 5.3 (a) Temperature dependence of the TEP of $La_{1-x}K_xMnO_3$ (x = 0.05, 0.10 & 0.15) pellets in the ferromagnetic region ($T < T_C$). The symbols represent the experimental data and the solid lines represent the best fit with the expression (5.7) as discussed in the text, **(b)** The scaling behavior for the TEP data obtained after subtracting the T-independent part (S_0) from S(T), the TEP data have been scaled as S to S'/S_P and T to T/T_C . (S'/S_P) is maximum at T/T_C =0.56. 146

Figure 5.4 Two phase analysis of resistivity and thermopower. **(a)** The Mixing Factor, C(H,T) extracted from the resistivity data of La_{1-x}K_xMnO₃ (x = 0.05, 0.10 & 0.15) using effective medium approach and assuming elongated conducting regions with the ratio a/b=25 for zero field, **(b)** TEP data (symbols) and the computed results (solid lines) using measured resistivity and effective medium approximation as described in the text (equation 5.11b).

Chapter 6

Figure 6.1 Resistivity and magnetoresistance of single-crystalline thin-film of $La_{0.7}Ca_{0.3}MnO_3$ in zero field and an applied field of 5Tesla, adopted from Hundley et al, 1995.

Figure 6.2 (a) Temperature (50 to 300K), **(b)-(d)** field dependence of magnetoresistance of polycrystalline $La_{1-x}K_xMnO_3$ system (x=0.05, 0.10, 0.15) under study. 159

Figure 6.3 (a)-(e) Field dependent magnetoresistance behavior in light of magnetic cluster model (equations 6.4a and 6.4b) in both paramagnetic and ferromagnetic regions of polycrystalline $La_{1-x}K_xMnO_3$ (x=0.05, 0.10, 0.15) system under study. Points are the experimental data; lines are the best fit to equations (6.4a) and (6.4b). 164

Figure 6.4 A typical MR dependence on average spin moment J(T) for the sample x=0.05 at different magnetic fields at T=50K and T=270K. 166

Figure 6.5 (a), (c), (e) Field dependent MR of polycrystalline $La_{1-x}K_xMnO_3$ (x=0.05, 0.10, 0.15) system. Points are the experimental data; lines correspond to the values calculated with the tunneling model. **(b), (d), (f)** Points are the derivative of experimental MR curves and lines are that calculated with equation (6.7). 170

Figure 6.6 (a)-(c) Behavior of intrinsic and extrinsic part of MR with temperature in the low temperature ferromagnetic region of polycrystalline $La_{1-x}K_xMnO_3$ (x=0.05, 0.10, 0.15) system obtained from the tunneling model, **(d)** Best fit of spin polarized part of MR corresponding to a+b/(c+T). 172

Figure 6.7 Deviation plots of MR of polycrystalline $La_{1-x}K_xMnO_3$ system for **(a)** x=0.05, **(b)** x=0.10 and **(c)** x=0.15 sample, open symbol represents magnetic cluster model; filled symbol corresponds to that of intergrain tunneling model. 173-174

xii

Chapter 7

Figure 7.1 The *S*-*T* diagram illustrating the magnetocaloric effect.

Figure 7.2 Schematic illustration of the temperature dependence of magnetization and the corresponding magnetocaloric effect in a ferromagnetic material. 184

181

Figure 7.3 (a)-(b) The isothermal magnetization curves measured at different temperatures for $La_{1-x}K_xMnO_3$ (x=0.05 & 0.10), (c) the temperature dependence of magnetization measured at different magnetic fields for $La_{1-x}K_xMnO_3$ (x=0.15) sample. 185

Figure 7.4 (a)-(c) Magnetic entropy change (ΔS_M) as a function of temperature in various magnetic fields for La_{1-x}K_xMnO₃ (x=0.05, 0.10 & 0.15) compounds. Lines are guide to the eyes. 186

Figure 7.5 (a)-(c) Adiabatic temperature change (ΔT_{ad}) estimated for La_{1-x}K_xMnO₃ (x=0.05, 0.10 & 0.15) compounds under different magnetic fields. 189

Figure 7.6 (a)-(c) Typical plot showing $\Delta S_M^{max} / \Delta S_M$ vs. T at 1Tesla magnetic field for La₁₋ $_xK_xMnO_3$ (x=0.05, 0.10 & 0.15) compounds. 190

Figure 7.7 (a) Field dependence of ΔS_M^{max} for La_{1-x}K_xMnO₃ sample, **(b)** Relative cooling power (*RCP*) and the coefficient 'q' as a function of K concentration, **(c)** ΔS_M vs. T for a magnetic field change from 0 to 1T for La_{1-x}K_xMnO₃ (x=0.05, 0.10 & 0.15) compounds.

Figure 7.8 (a) A typical temperature dependence of specific magnetization in zero field and some specified magnetic field calculated by mean field model (equations 7.18-7.20) for x=0.05 sample, **(b)** Magnetic entropy change (ΔS_M) for a typical La_{1-x}K_xMnO₃ sample with x=0.05. Points are the measured values and the solid lines represent ΔS_M calculated from mean field model. 196

Figure 7.9 Magnetic entropy change (ΔS_M) for a typical La_{1-x}K_xMnO₃ sample with x=0.05. Points are the measured values and the solid lines represent ΔS_M calculated from mean field model (equation 7.24).

Figure 7.10 (a)-(c) M^2 vs. H/M (Arrott) plot for La_{1-x}K_xMnO₃ system under study. 201

Figure 7.11 (a) Parameter (*A*) as a function of temperature for $La_{1-x}K_xMnO_3$ system, **(b)** Temperature dependence of (*B*) parameter (typical curve for x=0.05 sample). 201

Figure 7.12 (a)–(c) Magnetic entropy change (ΔS_M) for La_{1-x}K_xMnO₃ (x=0.05, 0.10 & 0.15) samples. Points are the measured values and the solid lines represent ΔS_M calculated from Landau theory. 202

xiii

List of Tables

Chapter 3 Table 3.1. Results of Rietveld analysis & structural parameters of La_{1-x}K_xMnO₃ system Table 3.2. Parameters of La_{1-x}K_xMnO₃ compounds

Chapter 4

Table 4.1. Parameters of La_{1-x}K_xMnO₃ compounds

91

78

80

Page

Table 4.2. Some of the important parameters estimated from resistivity data for La_1 _xK_xMnO₃ pellets. 99

Table 4.3. Best fit parameters obtained from the resistivity data $(T>T_{MI})$ of La_{1-x}K_xMnO₃ pellets in terms of adiabatic and non-adiabatic hopping model 99

Table 4.4. Best fit parameters obtained from the resistivity data $(T < T_{MI})$ of $La_{1-x}K_xMnO_3$ pellets in terms of different scattering models 112

Table 4.5. Best fit parameters obtained from the resistivity data $(T < T_{MT})$ of La_{1-x}K_xMnO₃ pellets combining soft phonon concept and different scattering models corresponding to equation (4.15b) 112

Table 4.6. Best fit parameters obtained for different low temperature resistivity minimum models of La_{1-x}K_xMnO₃ pellets below 50K 122

Table 4.7. Best fit parameters obtained for $La_{1-x}K_xMnO_3$ system using two phase model in the temperature range between 50 to ~300K 126

Chapter 5

Table 5.1. Best fit parameters of high Temperature TEP data (above T_c) of La_{1-x}K_xMnO₃ compounds using Mott's equation (5.4) 141

Table 5.2. Best fit parameters used to fit Low Temperature TEP data below T_c of La₁. _xK_xMnO₃ compounds 146

Chapter 6

Table 6.1. Some of the parameters and MR values of La_{1-x}K_xMnO₃ system 160

 Table 6.2. Best fit parameters of MR-analysis by spin dependent hopping model
 165

Table 6.3. The values of intrinsic and spin polarized part of MR obtained with the intergrain tunneling model (equation 6.5) 171

xiv

Table 6.4. Fitting parameters of spin polarized part of MR corresponding to a+b/(c+T)171

Chapter 7

Table 7.2. A relative comparison of the present results of $La_{1-x}K_xMnO_3$ compounds withsome of the divalent and monovalent doped manganites as well as with Gd.193

xv