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List of Symbols

 Symbols  Name           Units 

H0   Magnetic flux density      Tesla 
H   Magnetic field strength     Oersted 

MS   Isothermal entropy change     J/Kg.K 

adT   Adiabatic temperature change    Kelvin   
   Heat capacity at const. pressure and magnetic field J/Kg.K H,PC

2    X-Ray diffraction angle     Degree (°)  

D   Debye temperature      Kelvin (K)    
   Resistivity       .cm

0     Resistivity without magnetic field    .cm

H   Resistivity under magnetic field    .cm

PI    Resistivity in paramagnetic insulating state  .cm

FM   Resistivity in ferromagnetic metallic state    .cm
   Magnetic susceptibility            dimensionless 

   Absolute thermoelectric power    V/KabsS
   Thermopower in paramagnetic insulating state  V/KPIS
  Thermopower in ferromagnetic metallic state  V/KFMS

  Curie temperature       Kelvin (K)    CT
       Metal-insulator transition temperature   Kelvin (K) MIT
g     Lande factor              dimensionless 
M    Magnetization       emu/gm 

  Saturation magnetization     emu/gm 0M
MR    Magnetoresistance      Relative 
CMR     Colossal magnetoresistance     Relative 
LFMR   Low field magnetoresistance     Relative 

   Relative cooling power      J/cmRCP 3
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Physical constants 

          Symbol       Quantity                            Value                   Units 

         Electronic charge             1.60218x10e -19        Coulomb

BK          Boltzmann constant     1.3807x10-23      J/K

0          Vacuum Permeability        4 x10-7                  J/Tesla 

B         Bohr magneton                9.274x10-24          J/Tesla 

Glossary of abbreviations 

             Abbreviation            Meaning 

                  a.u.       Arbitrary Units 

                FWHM      Full Width at Half Maximum      

       XRD      X-ray diffraction 

                  K       Potassium  

          T       Temperature            
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