CONTENTS | Synops | SIS | ••• | • • • | (i) | |--------|---|---|--|----------------| | | | | | Page No. | | INTROL | DUCTION | ••• | ••• | 1 | | Chapte | ers | | | | | I. | VARIATIONAL PR
HEAT CONVECTIO | INCIPLES FOR THE | HE UNSTEADY | 22 | | | relations 3. 4. Lagrangian heat transfer | n 2. Basic the
The variational
formulation 5.
effect 6. Syst
pendent paramet | l principle
Surface
tems with | | | II. | VARIATIONAL PR
HEAT TRANSFER | | E STEADY | 47 | | • | oprinciple 3. and generalized heat transfer | n 2. The varia
Lagrangian form
d coordinates
effect 5. Nonl
re dependent pa | mlation
4. Surface
inear systems | | | III. | APPLICATION OF
THE PROBLEMS O | | L PRINCIPLE TO
RANSFER IN DUCT | S 63 | | | (A) Heat trans: for parabolic : estimation of : without details rature distribution parallel plates | n 2. Illustrat fer between par flow (B) Proced the Nusselt num ed calculations ution (C) Slug s 3(A) Parabol ar section (B) | vallel plates
ture for the
aber of infinity
of the tempe-
flow between
ic flow in a | | | IA. | | METHOD FOR COME
VECTION IN CHAN | | 8 9 | | | equations 3. the Nusselt nu | n 2. The momen
The mean mixed
mber 4. The va
lication to the | temperature and rightional pro- | | Page No. V. HEAT TRANSFER IN LAMINAR FLOW BETWEEN PARALLEL PLATES AT SMALL PECLET NUMBERS 107 1. Introduction 2. Formulation of the problem 3. Mathematical solution 4. The mean mixed temperature and Nusselt numbers 5. Comparison and discussion of the results. BIBLIOGRAPHY 131