LIST OF FIGURES

Page No.

Figure 1.1	Process flowsheet of a typical amine absorber/regenerator unit for acid gas removal.	18
Figure 2.1	Liquid – phase mass transfer using film theory.	35
Figure 2.2	Liquid – phase mass transfer for absorption with chemical reaction.	39
Figure 2.3	Concentration profiles for absorption with chemical reaction.	40
Figure 2.4	Concentration profiles of A and B for infinitely slow reaction regime.	43
Figure 2.5	Concentration profiles of A and B for slow reaction regime.	44
Figure 2.6	Concentration profiles of A and B for fast reaction regime.	47
Figure 2.7	Concentration profiles of A and B for instantaneous reaction regime.	48
Figure 3.1	Experimental set-up for solubility measurement.	76
Figure 3.2	Density of $(PZ + H_2O)$ at various temperatures.	77
Figure 3.3	Density of (MDEA + PZ + H_2O) at various temperatures.	77
Figure 3.4	Density of $(AMP + PZ + H_2O)$ at various temperatures.	78
Figure 3.5	Viscosity of $(PZ + H_2O)$ at various temperatures.	78
Figure 3.6	Viscosity of (MDEA + PZ + H_2O) at various temperatures.	79
Figure 3.7	Viscosity of $(AMP + PZ + H_2O)$ at various temperatures.	79
Figure 3.8	Henry's constant of CO ₂ in water as a function of temperature.	80
Figure 3.9	Henry's constant of N ₂ O in water as a function of temperature.	80
Figure 3.10a	Henry's constant of N_2O in (PZ + H ₂ O) at various temperatures.	81
Figure 3.10b	Henry's constant of N_2O in (PZ + H ₂ O) as function of mass % PZ.	81
Figure 3.11a	Henry's constant of N_2O in (MDEA + PZ + H ₂ O) at various temperatures.	82
Figure 3.11b	Henry's constant of N_2O in (MDEA + PZ + H ₂ O) as function of mass % PZ.	82
Figure 3.12a	Henry's constant of N_2O in (AMP + PZ + H ₂ O) at various temperatures.	83
Figure 3.12b	Henry's constant of N_2O in (AMP + PZ + H ₂ O) as function of mass % PZ.	83
Figure 3.13	Diffusivity of CO_2 in water as a function of temperature.	84
Figure 3.14	Diffusivity of N ₂ O in water as a function of temperature.	84

Figure 3.15a	Diffusivity of N_2O in (PZ + H ₂ O) at various temperatures.	85
Figure 3.15b	Diffusivity of N_2O in (PZ + H ₂ O) as function of mass % PZ.	85
Figure 3.16a	Diffusivity of N ₂ O in (MDEA + PZ + H ₂ O) at various temperatures.	86
Figure 3.16b	Diffusivity of N ₂ O in (MDEA + PZ + H ₂ O) as function of mass % PZ.	86
Figure 3.17a	Diffusivity of N_2O in (AMP + PZ + H ₂ O) at various temperatures.	87
Figure 3.17b	Diffusivity of N ₂ O in (AMP + PZ + H ₂ O) as function of mass % PZ.	87
Figure 4.1	Structures of PZ compounds in aqueous solution of PZ and CO_2 .	137
Figure 4.2	Wetted wall contactor experimental set-up for absorption rate measurement.	138
Figure 4.2a	Sectional view of the wetted wall contactor.	139
Figure 4.3	Effect of gas flow rate on specific rate of absorption of CO_2 into aqueous PZ solution.	140
Figure 4.4	Parity Plot of model predicted rates and experimental rates of absorption of CO_2 into aqueous PZ.	140
Figure 4.5	Temperature dependence of the reaction rate constant, k_{21} .	141
Figure 4.6	Temperature dependence of the reaction rate constant, k_{22} .	141
Figure 4.7	Straight line fit for rate of absorption of CO_2 into aqueous PZ solutions at low CO_2 partial pressures: T = 298 K.	142
Figure 4.8	Straight line fit for rate of absorption of CO_2 into aqueous PZ solutions at low CO_2 partial pressures: T = 303 K.	142
Figure 4.9	Straight line fit for rate of absorption of CO_2 into aqueous PZ solutions at low CO_2 partial pressures: T = 313 K.	143
Figure 4.10	Effect of PZ concentration on the enhancement factor for absorption of CO_2 into aqueous PZ solution: T = 313 K.	143
Figure 4.11	Effect of PZ concentration on rate of absorption of CO_2 into aqueous PZ solution: T = 313 K.	144
Figure 4.12	Effect of temperature on the rate of absorption of CO_2 into aqueous PZ solution.	144
Figure 4.13	Calculated concentration profiles of species in the liquid film near the gas-liquid interface at the end of the absorption length.	145
Figure 4.14	Predicted enhancement factor for absorption of CO_2 into aqueous PZ solution as a function of CO_2 interfacial concentration.	146
Figure 4.15	The effect of errors in Henry's Law constant on the predicted rate of absorption of CO_2 into an aqueous PZ solution.	146

xxiii

Figure 4.16	The effect of errors in the diffusion coefficient of CO_2 on the predicted rate of absorption of CO_2 into an aqueous PZ solution.	147
Figure 4.17	The effect of errors in the diffusion coefficients of all liquid phase chemical species on the predicted rate of absorption of CO_2 into an aqueous PZ solution.	147
Figure 4.18	The effect of errors in k_{21} (equation (4.10)) on the predicted rate of absorption of CO_2 into an aqueous PZ solution.	148
Figure 4.19	The effect of errors in k_{22} (equation (4.11)) on the predicted rate of absorption of CO_2 into an aqueous PZ solution.	148
Figure 4.20	The effect of errors in k_{23} (equation (4.12)) on the predicted rate of absorption of CO_2 into an aqueous PZ solution.	149
Figure 5.1	Effect of molar ratio of PZ/MDEA on the enhancement of CO_2 absorption into aqueous solution of (MDEA + PZ).	190
Figure 5.2	Effect of temperature on specific rate of absorption of CO_2 into aqueous (MDEA + PZ).	190
Figure 5.3	Effect of partial pressure on specific rate of CO_2 absorption into aqueous solution of (MDEA + PZ) at T= 313 K.	191
Figure 5.4	Effect of CO_2 loading on the enhancement of CO_2 absorption into aqueous solution of (MDEA + PZ) at T = 313 K.	191
Figure 5.5	Parity plot of model predicted rates and experimental rates of absorption of CO_2 into aqueous (MDEA + PZ).	192
Figure 5.6	Calculated concentration profile of species in the liquid film near the gas-liquid interface at the end of the absorption length. [MDEA] = 2.1513 kmol m ⁻³ , [PZ] = 0.6 kmol m ⁻³ .	192
Figure 5.6a	Typical calculated concentration profile of CO_2 in the liquid film near the gas-liquid interface at end of absorption length for PZ activated MDEA.	193
Figure 5.7	Arrhenius plot for reaction rate constant, k_{23} for $CO_2 - (MDEA + PZ + H_2O)$.	193
Figure 5.8	Arrhenius plot for reaction rate constant, k_{25} for $CO_2 - (MDEA + PZ + H_2O)$.	194
Figure 5.9	Effect of molar ratio of PZ/AMP on the enhancement of CO_2 absorption into aqueous solution of (AMP + PZ).	195
Figure 5.10	Effect of temperature on specific rate of absorption of CO_2 into aqueous (AMP + PZ).	195
Figure 5.11	Effect of partial pressure on specific rate of CO_2 absorption into aqueous solution of (AMP + PZ) at T= 313 K.	196
Figure 5.12	Effect of CO_2 loading on the enhancement of CO_2 absorption into aqueous solution of (AMP + PZ) at T = 313 K.	196

xxiv

Figure 5.13	Parity plot of model predicted rates and experimental rates of absorption of CO_2 into aqueous (AMP + PZ).	197
Figure 5.14	Calculated concentration profile of species in the liquid film near the gas-liquid interface at the end of the absorption length: $[AMP] = 2.81$ kmol m ⁻³ , $[PZ] = 0.58$ kmol m ⁻³ .	197
Figure 5.14a	Typical calculated concentration profile of CO_2 in the liquid film near	
	the gas-liquid interface at end of absorption length for PZ activated AMP	198
Figure 5.15	Arrhenius plot for the reaction rate constant, k_{23} for $CO_2 - (AMP + PZ + H_2O)$.	199
Figure 5.16	Arrhenius plot for the reaction rate constant, k_{25} for $CO_2 - (AMP +$	
	$PZ + H_2O$).	199
Figure 5.17	Predicted enhancement factor for the absorption of CO_2 into aqueous (MDEA+ PZ) as a function of CO_2 interfacial concentration.	200
Figure 5.18	The effect of errors in Henry's Law constant on the predicted rate of	
	absorption of CO ₂ into an aqueous (MDEA+ PZ) solution.	200
Figure 5.19	The effect of errors in the diffusion coefficient of CO_2 on the predicted	
	rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	201
Figure 5.20	The effect of errors in the diffusion coefficients of all liquid phase chemical species on the predicted rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	201
Figure 5.21	The effect of errors in k_{21} on the predicted rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	202
Figure 5.22	The effect of errors in k_{22} on the predicted rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	202
Figure 5.23	The effect of errors in k_{23} on the predicted rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	203
Figure 5.24	The effect of errors in k_{24} on the predicted rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	203
Figure 5.25	The effect of errors in k_{25} on the predicted rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	204
Figure 5.26	The effect of errors in k_{26} on the predicted rate of absorption of CO_2 into an aqueous (MDEA+ PZ) solution.	204
Figure 5.27	Predicted enhancement factor for the absorption of CO_2 into aqueous (AMP + PZ) as a function of CO_2 interfacial concentration.	205
Figure 5.28	The effect of errors in Henry's Law constant on the predicted rate of absorption of CO_2 into an aqueous (AMP + PZ) solution.	205

Figure 5.29	The effect of errors in the diffusion coefficient of CO_2 on the predicted rate of absorption of CO_2 into an aqueous (AMP+ PZ) solution.	206
Figure 5.30	The effect of errors in the diffusion coefficients of all chemical species on the predicted rate of absorption of CO_2 into an aqueous (AMP+ PZ) solution.	206
Figure 5.31	The effect of errors in k_{21} on the predicted rate of absorption of CO ₂ into an aqueous (AMP+ PZ) solution.	207
Figure 5.32	The effect of errors in k_{22} on the predicted rate of absorption of CO ₂ into an aqueous (AMP+ PZ) solution.	207
Figure 5.33	The effect of errors in k_{23} on the predicted rate of absorption of CO ₂ into an aqueous (AMP+ PZ) solution.	208
Figure 5.34	The effect of errors in k_{24} on the predicted rate of absorption of CO_2 into an aqueous (AMP+ PZ) solution.	208
Figure 5.35	The effect of errors in k_{25} on the predicted rate of absorption of CO ₂ into an aqueous (AMP+ PZ) solution.	209
Figure 5.36	The effect of errors in k_{26} on the predicted rate of absorption of CO_2 into an aqueous (AMP+ PZ) solution.	209
Figure 5.37	Relative performance of aqueous (MDEA + PZ) and aqueous (AMP + PZ) solvents for CO_2 removal	210
Figure I.1	Flowchart for computer program to solve the diffusion – reaction equations	232

XXV

LIST OF TABLES

Table 1.1	Commercial CO ₂ scrubbing solvents used in gas treating industry.	19
Table 1.2	Structural formulas for some important amines in gas treating.	20
Table 2.1	Literature data on the reaction between CO_2 and aqueous MEA.	54
Table 2.2	Literature data on the reaction between CO_2 and aqueous DEA.	55
Table 2.3	Literature data on the reaction between CO_2 and aqueous DEA assuming zwitterion mechanism.	55
Table 2.4	Literature data on the reaction between CO_2 and aqueous TEA.	56
Table 2.5	Literature data on the reaction between CO ₂ and aqueous MDEA.	56
Table 2.6	Literature data on the reaction between CO ₂ and aqueous AMP.	57
Table 2.7	Important features of model gas-liquid contactors.	58
Table 3.1a	Density and viscosity of aqueous piperazine.	88
Table 3.1b	Density and viscosity of aqueous piperazine.	89
Table 3.2a	Density and viscosity of (MDEA + PZ + H_2O).	90
Table 3.2b	Density and viscosity of (MDEA + PZ + H_2O).	91
Table 3.3a	Density and viscosity of $(AMP + PZ + H_2O)$.	92
Table 3.3b	Density and viscosity of $(AMP + PZ + H_2O)$.	93
Table 3.4	Parameters and AADs for density correlations for $(PZ + H_2O)$, $(PZ + MDEA + H_2O)$ and $(PZ + AMP + H_2O)$.	94
Table 3.5	Parameters and AADs for viscosity correlations for $(PZ + H_2O)$, $(PZ + MDEA + H_2O)$ and $(PZ + AMP + H_2O)$.	95
Table 3.6	Measured physical solubility of CO ₂ and N ₂ O in water.	96
Table 3.7	Estimated solubility of CO_2 in aqueous solution of PZ using N_2O analogy.	97
Table 3.8	Estimated solubility of CO_2 in (MDEA + PZ + H ₂ O) solution using N ₂ O analogy.	98
Table 3.9	Estimated solubility of CO_2 in (AMP + PZ + H ₂ O) solution using N ₂ O analogy.	99
Table 3.10	Parameters and AADs for N_2O solubility correlations for the binary and ternary solvent systems.	100

xxviii

Table 3.11	Measured diffusivity of CO ₂ and N ₂ O in water.	101
Table 3.12	Estimated diffusivity of CO_2 in aqueous solution of PZ using $N_2\text{O}$ analogy.	102
Table 3.13	Estimated diffusivity of CO_2 in (MDEA + PZ + H ₂ O) solution using N ₂ O analogy.	103
Table 3.14	Estimated diffusivity of CO_2 in (AMP+ PZ+H ₂ O) solution using N ₂ O analogy.	104
Table 3.15	Parameters and AADs for N_2O diffusivity correlations for the binary and ternary solvent systems.	105
Table 3.16	Test of validity of the modified Stokes–Einstein equation (equation (3.22)) for the diffusivity of N_2O , D_{N_2O} , in (PZ + H ₂ O).	106
Table 3.17	Test of validity of the modified Stokes –Einstein equation (equation (3.22)) for the diffusivity of N ₂ O, D_{N_2O} , in (MDEA + PZ + H ₂ O)	107
Table 3.18	Test of validity of the modified Stokes –Einstein equation (equation (3.23)) for the diffusivity of N ₂ O, D_{N_2O} , in (AMP + PZ + H ₂ O).	108
Table 4.1	Results of absorption of CO_2 into aqueous solution of PZ: effect of gas flow rate. [PZ] = 0.8 kmol m ⁻³ .	150
Table 4.2	Physicochemical properties of aqueous piperazine.	151
Table 4.3	Experimental and model predicted results for the absorption of CO_2 into aqueous PZ in the wetted wall contactor: $[PZ] = 0.2$ kmol.m ⁻³ .	152
Table 4.4	Experimental and model predicted results for the absorption of CO_2 into aqueous PZ in the wetted wall contactor: $[PZ] = 0.4$ kmol.m ⁻³ .	153
Table 4.5	Experimental and model predicted results for the absorption of CO_2 into aqueous PZ in the wetted wall contactor: $[PZ] = 0.8 \text{ kmol.m}^{-3}$.	154
Table 4.6	Correlations used to estimate the equilibrium constants.	155
Table 4.7	Experimental results for the absorption of CO_2 into aqueous PZ in the wetted wall contactor (at low partial pressure of CO_2): [PZ] = 0.2 kmol.m ⁻³ .	156
Table 4.8	Reaction rate constant calculated with fast pseudo-first order assumption at low partial pressure of CO_2 : [PZ] = 0.2 kmol.m ⁻³ .	157
Table 5.1	Density and viscosity of the aqueous (MDEA + PZ) solutions studied and the diffusivity and Henry's law constants of CO_2 in these solutions.	211
Table 5.2	Experimental data and model results for the absorption of CO_2 into aqueous solutions of (MDEA + PZ) in the wetted wall contactor. [PZ] = 0.238 kmol.m ⁻³ , [MDEA] = 2.409 kmol.m ⁻³ .	212
Table 5.3	Experimental data and model results for the absorption of CO_2 into aqueous solutions of (MDEA + PZ) in the wetted wall contactor. [PZ] = 0.60 kmol.m ⁻³ , [MDEA] = 2.151 kmol.m ⁻³ .	213

Table 5.4	Experimental data and model results for the absorption of CO_2 into aqueous solutions of (MDEA + PZ) in the wetted wall contactor. [PZ] = 0.95 kmol.m ⁻³ , [MDEA] = 1.889 kmol.m ⁻³ .	214
Table 5.5	Experimental data and model results for the absorption of CO_2 into aqueous solutions of 30 wt% MDEA in the wetted wall contactor.	215
Table 5.6	Density and viscosity of the aqueous (AMP + PZ) solutions studied and the diffusivity and Henry's law constants of CO_2 in these solutions.	216
Table 5.7	Experimental data and model results for the absorption of CO_2 into aqueous solutions of (AMP + PZ) in the wetted wall contactor. [PZ] = 0.23 kmol.m ⁻³ , [AMP] = 3.14 kmol.m ⁻³ .	217
Table 5.8	Experimental data and model results for the absorption of CO_2 into aqueous solutions of (AMP + PZ) in the wetted wall contactor. [PZ] = 0.58 kmol.m ⁻³ , [AMP] = 2.81 kmol.m ⁻³ .	218
Table 5.9	Experimental data and model results for the absorption of CO_2 into aqueous solutions of (AMP + PZ) in the wetted wall contactor. [PZ] = 0.94 kmol.m ⁻³ , [AMP] = 2.49 kmol.m ⁻³ .	219
Table 5.10	Experimental data and model results for the absorption of CO_2 into aqueous solutions of 30 wt% AMP in the wetted wall contactor.	220
Table 5.11	Results of vapour-liquid equilibrium measurements of $CO_2 - (AMP + PZ + H_2O)$.	220

NOMENCLATURE

А	gaseous species that is being absorbed into the liquid B in equation (2.34)	
[A]	local concentration of A at any point in the liquid phase, kmol.m ⁻³	
$[A^*]$	concentration of dissolved gas A at gas-liquid interface, in equilibrium with	
	gas at interface, kmol.m ⁻³	
$[A_0]$	concentration of A in bulk of liquid, kmol.m ⁻³	
а	gas-liquid interfacial area per unit volume of liquid, m ⁻¹	
AMP	2-amino-2-methyl-1-propanol	
В	base in reaction (2.2); or dissolved reactive species present in the liquid	
	phase (equation (2.34))	
[B]	local concentration of B at any point in the liquid phase, kmol.m ⁻³	
$[B_0]$	concentration of species B in bulk of the liquid, kmol.m ⁻³	
D	diffusivity, m ² .s ⁻¹	
D_A	diffusivity of dissolved gas A in the liquid phase, m ² .s ⁻¹	
D_B	diffusivity of reactant B, m ² .s ⁻¹	
D_{CO_2}	diffusivity of dissolved CO_2 in the liquid phase, $m^2.s^{-1}$	
D _{N20}	diffusivity of dissolved N ₂ O in the liquid phase, m ² .s ⁻¹	
D_i	diffusivity of species i in the liquid phase, m ² .s ⁻¹	
$D_{CO_2-water}$	diffusivity of CO_2 in water, m ² .s ⁻¹	
D _{CO2} -amine	diffusivity of CO_2 in amine solution, $m^2.s^{-1}$	
$D_{N_2O-amine}$	diffusivity of N_2O in amine solution, $m^2.s^{-1}$	
D _{N2O-water}	diffusivity of N ₂ O in water, m ² .s ⁻¹	
d _c	diameter of the wetted wall contactor, m	
DEA	diethanolamine	
DIPA	di-2-propanolamine	
Е	enhancement factor defined by equation (2.36), dimensionless	
E _{CO₂}	enhancement factor for absorption of CO ₂ , dimensionless	
E_{∞}	enhancement factor for an infinitely fast reaction regime defined by	
	equations (2.41) and (2.42)	
f	vapour pressure of liquid, kPa	
g	gravitational acceleration, m.s ⁻²	
Н	Henry's constant, kPa.m ³ .kmol ⁻¹	
H_i	Henry's constant of species i, kPa.m ³ .kmol ⁻¹	
H_{CO_2}	Henry's constant for CO ₂ , kPa.m ³ .kmol ⁻¹	

xxxii

H _{N-0}	Henry's constant for N ₂ O, kPa.m ³ .kmol ⁻¹
H _{CO₂-water}	Henry's constant of CO ₂ in water, kPa.m ³ .kmol ⁻¹
$H_{CO,-amine}$	Henry's constant of CO ₂ in amine solution kPa.m ³ .kmol ⁻¹
$H_{N,O}$ amine	Henry's constant of N ₂ O in amine solution, kPa.m ³ .kmol ⁻¹
H _N _O water	Henry's constant of N ₂ O in water, kPa.m ³ .kmol ⁻¹
h	absorption length, m
На	Hatta number defined by equation (2.38)
K _i	equilibrium constant of reaction i
$\mathbf{k}_{\mathbf{i}}$	rate coefficient of reaction i
k_i	reverse rate coefficient of reaction i
\mathbf{k}_{ij}	forward rate coefficient for reaction j, equations $(4.10) - (4.12)$ and
	equations (5.1) –(5.6)
\mathbf{k}_1	pseudo-first-order rate constant for reaction between A and B, s ⁻¹
\mathbf{k}_2	second order rate constant for reaction between A and B, m ³ .kmol ⁻¹ .s ⁻¹
k _b	rate coefficient for reaction (2.2)
k_g	gas phase mass transfer coefficient, kmol.m ⁻² s ⁻¹ kPa ⁻¹
k_L	liquid phase mass transfer coefficient, m.s ⁻¹
$\mathbf{k_L}'$	liquid phase mass transfer coefficient in presence of chemical reaction, m.s ⁻¹
\mathbf{k}_{mn}	rate constant for reaction, m th order in A and n th order in B, (m ³ /kmol) ^{m+n-1} s ⁻¹
1	fractional liquid volume holdup of B phase, dimensionless
MEA	monoethanolamine
MDEA	N-methyldiethanolamine
m	order of reaction with respect to species A
n	order of reaction with respect to species B
N _{Re}	liquid film Reynolds number
Р	total pressure, kPa
p _A	partial pressure of species A, kPa
$\mathbf{p}_{\mathrm{CO}_2}$	partial pressure of CO ₂ , kPa
PZ	piperazine
PZCOO ⁻	piperazine monocarbamate
PZ(COO ⁻) ₂	piperazine dicarbamate
Q	quantity of gas absorbed by unit area in time of contact θ , kmol.m ⁻²
q	total rate of absorption, kmol.s ⁻¹
R _A	specific rate of absorption of species A, kmol.m ⁻² .s ⁻¹
R_{CO_2}	specific rate of absorption of CO ₂ , kmol.m ⁻² .s ⁻¹

r_{CO_2}	rate of reaction defined by equation (2.4)
S_1, S_2	coefficients in equation (3.13)
S	fractional rate of surface-renewal, s ⁻¹
Т	temperature, K
t	time, of the order of contact, s
TEA	Triethanolamine
u	velocity of the liquid element at any depth from surface, m.s ⁻¹
u _s	velocity at surface, m.s ⁻¹
u_i^0	concentration of species i in the liquid phase, kmol.m ⁻³
u [*] _i	initial liquid bulk concentration of species i, kmol.m ⁻³
u	interfacial concentration of CO ₂ in the liquid, kmol.m ⁻³
V_{G}	volumetric gas flow rate, m ³ .s ⁻¹
V_L	volumetric liquid flow rate, m ³ .s ⁻¹
υ_{L}	volume of clear liquid, m ³
W	film thickness, m
WPZ	mass fraction of PZ in solution
WMDEA	mass fraction of MDEA in solution
WAMP	mass fraction of AMP in solution
Х	independent spatial variable, m
x _i	mole fraction of species i in equation (4.5)
α	parameter defined by equations (3.19) and (3.25)
α_1	initial CO_2 loading of the solution in equation (4.18), kmol CO_2 /kmol total amine
δ	thickness of diffusion film, m
ϕ_L	fractional liquid volume holdup of B-phase, dimensionless
η	viscosity of the mixture in equation (3.14), mPa.s
λ	reaction plane location measured from the interface, m
μ	viscosity of liquid, kg.m ⁻¹ .s ⁻¹ or mPa.s
θ	contact time, s
ρ	density of the liquid, kg.m ⁻³
ν	stoichiometric coefficient in equation (2.34)

Chapter 1

INTRODUCTION TO GAS TREATING

1.1 INTRODUCTION

The removal of acid gas impurities such as carbon dioxide (CO₂), hydrogen sulfide (H₂S), and carbonyl sulfide (COS) from industrial gases is an essential step in processing sour natural gas, refinery off-gases, and synthesis gas for ammonia production. The removal of acid gases from gas streams, commonly referred to as acid gas treating and also as gas sweetening, is a technology that has been in use for several years in natural gas processing units, refineries, petrochemicals, and fertilizer industries. In 1930 Bottoms (Bottoms, 1930) presented a process to remove CO₂ using alkanolamines.

CO₂ and H₂S concentrations in the sour natural gas streams may vary widely, from several parts per million to 50% by volume of the gas streams. These impurities when present in the gas streams may lead to very serious problems in pipeline transportation and downstream processing of the gas. CO_2 present in natural gas will reduce the heating value of the gas and may cause corrosion in pipelines and equipment in presence of moisture. Moreover, energy is wasted in compressing this extra volume for pipeline transportation of natural gas. The CO₂ specification in the treated natural gas may be about < 1% by volume for pipeline gas, but for natural gas liquefaction plants CO_2 in the treated natural gas must be below 100 ppm to avoid freezing in the cryogenic equipment. The CO_2 specification is < 10 ppm by volume for treated syngas for ammonia manufacture to protect ammonia synthesis catalyst (Astarita et al., 1983). Bio-generated methane from the decomposition of organic material often contains large amounts of CO₂, which must be removed in order to improve its heating value (Ashare, 1981; Zimmerman *et al.*, 1985). The cleanup target for H_2S is particularly stringent, e.g., 4 ppm by volume for pipeline gas, 0.1 ppm for ammonia synthesis and in petrochemical plants (Astarita *et al.*, 1983). In refinery operations, H_2S must be