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NOMENCLATURE

A gaseous species that is being absorbed into the liquid B in equation (2.34) 

[A] local concentration of A at any point in the liquid phase, kmol.m-3

[A*] concentration of dissolved gas A at gas-liquid interface, in equilibrium with  

gas at interface, kmol.m-3

[A0] concentration of A in bulk of liquid, kmol.m-3

a gas-liquid interfacial area per unit volume of liquid, m-1

AMP 2-amino-2-methyl-1-propanol 

B base in reaction (2.2); or dissolved reactive species present in the liquid  

phase (equation (2.34)) 

[B] local concentration of B at any point in the liquid phase, kmol.m-3

[B0] concentration of species B in bulk of the liquid, kmol.m-3

D diffusivity, m2.s-1

DA diffusivity of dissolved gas A in the liquid phase, m2.s-1

DBB diffusivity of reactant B, m2.s-1

2COD diffusivity of dissolved CO2 in the liquid phase, m2.s-1

ON2
D diffusivity of dissolved N2O in the liquid phase, m2.s-1

Di diffusivity of species i in the liquid phase, m2.s-1

waterCO2
D diffusivity of CO2 in water, m2.s-1

amineCO2
D diffusivity of CO2 in amine solution, m2.s-1

amineON2
D diffusivity of N2O in amine solution, m2.s-1

waterON2
D diffusivity of N2O in water, m2.s-1

dc diameter of the wetted wall contactor, m 

DEA diethanolamine 

DIPA di-2-propanolamine 

E enhancement factor defined by equation (2.36), dimensionless 

2COE enhancement factor for absorption of CO2, dimensionless 

E enhancement factor for an infinitely fast reaction regime defined by  

equations (2.41) and (2.42) 

f vapour pressure of liquid, kPa 

g gravitational acceleration, m.s-2

H Henry’s constant, kPa.m3.kmol-1

Hi Henry’s constant of species i, kPa.m3.kmol-1

2COH Henry’s constant for CO2, kPa.m3.kmol-1
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ON2
H Henry’s constant for N2O, kPa.m3.kmol-1

waterCO2
H Henry’s constant of CO2 in water, kPa.m3.kmol-1

amineCO2
H Henry’s constant of CO2 in amine solution kPa.m3.kmol-1

amineON2
H Henry’s constant of N2O in amine solution, kPa.m3.kmol-1

waterON2
H Henry’s constant of N2O in water, kPa.m3.kmol-1

h absorption length, m 

Ha Hatta number defined by equation (2.38) 

Ki equilibrium constant of reaction i 

ki rate coefficient of reaction i 

k-i reverse rate coefficient of reaction i 

kij forward rate coefficient for reaction j, equations (4.10) – (4.12) and  

equations ( 5.1) –(5.6) 

k1 pseudo-first-order rate constant for reaction between A and B, s-1

k2 second order rate constant for reaction between A and B, m3.kmol-1.s-1

kb  rate coefficient for reaction (2.2) 

kg gas phase mass transfer coefficient, kmol.m-2 s-1 kPa-1

kL liquid phase mass transfer coefficient, m.s-1

kL
/ liquid phase mass transfer coefficient in presence of chemical reaction, m.s-1

kmn rate constant for reaction, mth order in A and nth order in B, (m3/kmol)m+n-1 s-1

l fractional liquid volume holdup of B phase, dimensionless 

MEA monoethanolamine  

MDEA N-methyldiethanolamine 

m order of reaction with respect to species A 

n order of reaction with respect to species B 

NRe liquid film Reynolds number 

P total pressure, kPa 

pA partial pressure of species A, kPa 

2COp partial pressure of CO2, kPa 

PZ piperazine 

PZCOO- piperazine monocarbamate 

PZ(COO-)2 piperazine dicarbamate 

Q quantity of gas absorbed by unit area in time of contact , kmol.m-2

q total rate of absorption, kmol.s-1

RA specific rate of absorption of species A, kmol.m-2.s-1

2COR specific rate of absorption of CO2, kmol.m-2.s-1
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2COr rate of reaction defined by equation (2.4) 

S1, S2 coefficients in equation (3.13) 

s fractional rate of surface-renewal, s-1

T temperature, K 

t time, of the order of contact, s 

TEA Triethanolamine 

u velocity of the liquid element at any depth from surface, m.s-1

us velocity at surface, m.s-1

0
iu concentration of species i in the liquid phase, kmol.m-3

*
iu initial liquid bulk concentration of species i, kmol.m-3

u interfacial concentration of CO2 in the liquid, kmol.m-3

VG volumetric gas flow rate, m3.s-1

VL volumetric liquid flow rate, m3.s-1

L volume of clear liquid, m3

w film thickness, m 

wPZ mass fraction of PZ in solution   

WMDEA mass fraction of MDEA in solution   

WAMP mass fraction of AMP in solution   

x independent spatial variable, m 

xi mole fraction of species i in equation (4.5) 

parameter defined by equations (3.19) and (3.25) 

1 initial CO2 loading of the solution in equation (4.18), kmol CO2/kmol total amine 

thickness of diffusion film, m 

L fractional liquid volume holdup of B-phase, dimensionless  

viscosity of the mixture in equation (3.14), mPa.s 

reaction plane location measured from the interface, m 

viscosity of liquid, kg.m-1.s-1 or mPa.s 

contact time, s 

density of the liquid, kg.m-3

stoichiometric coefficient in equation (2.34) 
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INTRODUCTION TO GAS TREATING  

1.1 INTRODUCTION

The removal of acid gas impurities such as carbon dioxide (CO2), hydrogen 

sulfide (H2S), and carbonyl sulfide (COS) from industrial gases is an essential step in 

processing sour natural gas, refinery off-gases, and synthesis gas for ammonia 

production. The removal of acid gases from gas streams, commonly referred to as acid 

gas treating and also as gas sweetening, is a technology that has been in use for several 

years in natural gas processing units, refineries, petrochemicals, and fertilizer 

industries. In 1930 Bottoms (Bottoms, 1930) presented a process to remove CO2 using 

alkanolamines.  

CO2 and H2S concentrations in the sour natural gas streams may vary widely, 

from several parts per million to 50% by volume of the gas streams. These impurities 

when present in the gas streams may lead to very serious problems in pipeline 

transportation and downstream processing of the gas. CO2 present in natural gas will 

reduce the heating value of the gas and may cause corrosion in pipelines and equipment 

in presence of moisture. Moreover, energy is wasted in compressing this extra volume 

for pipeline transportation of natural gas. The CO2 specification in the treated natural 

gas may be about < 1% by volume for pipeline gas, but for natural gas liquefaction 

plants CO2 in the treated natural gas must be below 100 ppm to avoid freezing in the 

cryogenic equipment. The CO2 specification is < 10 ppm by volume for treated syngas 

for ammonia manufacture to protect ammonia synthesis catalyst (Astarita et al., 1983). 

Bio-generated methane from the decomposition of organic material often contains large 

amounts of CO2, which must be removed in order to improve its heating value (Ashare, 

1981; Zimmerman et al., 1985). The cleanup target for H2S is particularly stringent, 

e.g., 4 ppm by volume for pipeline gas, 0.1 ppm for ammonia synthesis and in 

petrochemical plants (Astarita et al., 1983). In refinery operations, H2S must be 


