Structural Evolution in ¹²⁵I, ¹²³I and ¹²²I with Increasing Angular Momentum

Abstract

This thesis investigates the angular momentum induced structural changes in ¹²⁵I, ¹²³I, and ¹²²I nuclei. Three separate experiments were performed to acquire the requisite data. The high spin states in ¹²⁵I and ¹²³I were studied using the heavy-ion fusion evaporation reactions ^{82,80}Se(⁴⁸Ca,p4n)^{125,123}I with the Gammasphere array. The nucleus ¹²²I was investigated using the reaction ¹¹⁶Cd(¹¹B,5n)¹²²I with the Indian National Gamma Array (INGA) spectrometer. A detailed level scheme, for both positive and negative parities, have been established in the study of all the three nuclei. These nuclei undergo a shape transition from moderately deformed states with collective rotation at low spins to noncollective oblate configurations at higher spins. Non-collective oblate states, which are energetically favored with respect to a rotating liquid drop reference, have been identified at spin $I \sim 30 \hbar$ in all the three nuclei. Cranked Nilsson Strutinsky (CNS) calculations suggest that these states are maximally aligned states, formed by aligning all the valence particles above $\frac{114}{50}$ Sn₆₄ core, along a common axis. In addition, favored non-collective states, where the spin vectors of one or two particles are anti-aligned, have also been identified at $I \sim 20 - 22 \hbar$.

Several dipole transitions of energies in the range of 1.0 - 1.7 MeV have been observed feeding the maximally aligned non-collective states in ¹²³I and ¹²²I. CNS calculations indicate that these weak feeding transitions originate from the configurations involving a core-breaking neutron particle-hole excitation from the $g_{7/2}d_{5/2}$ to the $d_{3/2}s_{1/2}$ or $h_{11/2}$ orbitals across the semi-magic N = 64 shell gap.

At high-spin, rotational bands extending upto $I \sim 50 \ \hbar$ have been observed in ¹²⁵I and ¹²³I. The properties of these newly identified bands are similar to those of the highly deformed bands recently discovered in the neighboring nuclei, ^{125,126}Xe and ¹²⁴Ba. Moreover, the band in ¹²⁵I is found to be 'identical' to one of the bands in ¹²⁶Xe. This suggests almost similar configuration for the two bands. A comparison of various features of the bands with the results of the CNS calculations suggests that the configuration of these bands involve neutron excitations across the N = 82 shell gap into the $h_{9/2}$ and $i_{13/2}$ orbitals, coupled to the proton two-particle-two-hole excitation from the $g_{9/2}$ orbitals across the Z = 50 shell closure.

Key words: Nuclear reactions 80,82 Se $({}^{48}$ Ca,p4n $)^{123,125}$ I, E = 205-207 MeV; 116 Cd $({}^{11}$ B,5n $)^{122}$ I, E = 65 MeV; Gammasphere array; INGA array; measured γ - γ coincidences; E_{γ} ; I_{γ} ; angular distribution ratios; linear polarization; spin and parity; Cranked Nilsson-Strutinsky Model calculations.