CONTENTS

			Page	No.
CHAPTER	I	GENERAL INTRODUCTION		
	1.1	Introduction	1	
	1.2	The role of redundancy in reliability improvement	2	
	1.3	The problem of reliability optimization through the use of active parallel redundancy	5	
	1.4	Review of previous work	6	
	1.5	Scope of the present study	25	
	1.6	Investigations reported in the present thesis	26	
CHAPTER	II	SOME GENERAL SYSTEM MODELS		
	2.1	Introduction	31	
	2.2	Systems with redundancy viewed as a 'multivariate birth process'	32	
	2.3	The system model: the most general case	36	
	2.4	Systems composed of independent subsystems	42	
	2.5	Some examples of state dependent systems	53	
CHAPTER	III	LIFE CHARACTERISTICS OF PARALLEL SYSTEMS WITH STATE DEPENDENT COMPONENTS		
	3.1	Introduction	56	
	3.2	Suitable forms for state dependent density function (2.4.17)	57	
		3.2.1 The exponential model	59)
		3.2.2 The weibull model	62	2
		3.2.3 The modified extreme value model	67	7
		3.2.4 The case of identical components	69	2

				Page No.	
	3.3	Syst	tem models generated by different		
		form	(m _j) ns of ⊲ _i	70	
		3.3.1	Desirable properties of α_j	71	
		3.3.2	Models considered by previous investigators	72	
		3.3.3	Some possible modifications of the existing models	78	
	,	3.3.4	The proposed model	79	
			Appendix A-1	82	
			Appendix A-2	88	
CHAPTER	IA		ION OF REDUNDANCY OPTIMIZATION EMS THROUGH THE USE OF EXACT METHODS	5	
	4.1	Int	roduction	90	
	4.2	The	problem formulation	91	
	4.3	Us e	of dynamic programming technique	93	
	4.4	The	search technique of Geoffrion	97	
	4.5	The Bel	search technique of Lawler and	106	
	4.6	Con	clusions	120	
	4.7	Com	putational experience	120	
			Appendix-B	121	
CHAPTER	V		F HEURISTICS IN SOLVING THE OPTIMAL DANCY ALLOCATION PROBLEMS		
	5.1	Int	roduction	127	
r	5.2	App:	lication of the heuristic of Gopal	129	
	5.3	A n	ew heuristic	132	
		CONCL	UDING REMARKS	143	
		SYNOP	SIS	145	
		BT BT.T	OGRAPHY	151	