Abstract

The present thesis explores the evolution of shape changes in the ¹²⁰Te, ¹²²Te and ¹²⁴Xe nuclei with excitation energy and angular momentum using γ -spectroscopy. The nucleus ¹²⁰Te has been populated through heavy-ion fusion reaction, ⁸⁰Se(⁴⁸Ca, α 4n)¹²⁰Te with Gammasphere. The study of ¹²²Te involved two experiments, one using ¹¹⁶Cd(¹¹B, p4n)¹²²Te with Indian National Gamma Array (INGA) and the other using ⁸²Se(⁴⁸Ca, α 4n)¹²²Te with Gammasphere. Heavy-ion fusion reaction involving ⁸⁰Se target and ⁴⁸Ca as projectile was used to populate high-spin states in ¹²⁴Xe. The previously known level schemes were extended to considerable higher spins using γ -ray coincidence measurements.

Non-collective maximally-aligned and anti-aligned oblate states were observed in ¹²⁰Te and ¹²²Te around $I \sim 20\hbar$. The experimental results were discussed in the theoretical framework of pairing independent cranked Nilsson Strutinsky (CNS) model calculations. The calculated and observed results were found to be in agreement. These states were explained with distribution of valence nucleons in $(g_{7/2}, d_{5/2})$, $(d_{3/2}, s_{1/2})$ and $h_{11/2}$ orbitals outside the ¹¹⁴Sn core.

Furthermore, several high-spin rotational bands have been observed in all the three nuclei. The existence of these bands is an indication of development of collectivity beyond termination. The transitions connecting the bands and low-medium spin states in level scheme were not observed. The spins and excitation energies of the bands were chosen in accordance with those of the connected bands in neighboring nuclei and from their relative intensities respectively. The configurations were assigned for the bands corresponding to the lowest band structures calculated using CNS model. Interestingly, high-spin bands in ¹²⁰Te and ¹²²Te involve proton excitations across Z = 50 shell gap coupled to neutron excitations within N = 50-82 valence space. Similar results were observed for ¹²⁴Xe except for a few configurations where neutron excitations across N = 82 shell gap was found to be energetically favorable.

Keywords: Nuclear reactions ^{80,82}Se(⁴⁸Ca, α 4n)^{120,122}Te, E = 205, 207 MeV; ¹¹⁶Cd(¹¹B, p4n)¹²²Te, E = 65 MeV; ⁸⁰Se(⁴⁸Ca, 4n)¹²⁴Xe, E = 207 MeV; Gammasphere array; INGA array; measured γ - γ coincidences; E_{γ} ; I_{γ} ; angular distribution ratios; linear polarization; spin and parity; cranked Nilsson Strutinsky (CNS) calculations.