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Chapter 1

Introduction

Let X be a complex Banach space with norm ‖.‖ and T be a compact linear operator on

X. We are interested in numerically solving the following eigenvalue problem

T u = λu, λ ∈ C− {0}, ‖u‖ = 1.

Many practical problems in science and engineering are formulated as eigenvalue problems

of a compact linear integral operators T (cf., Chatelin [17]). As these problems, in general,

can not be solved exactly, it becomes necessary to approximate the operator T by finite

rank operators and then solve the original eigenvalue problem approximately. Let {Tn}
be a sequence of finite rank operators on X approximating T in some sense, then the

above eigenvalue problem can be approximated by the following approximated eigenvalue

problem

Tnun = λnun, λn ∈ C− {0}, ‖un‖ = 1.

For the last many years, numerical solution of the eigenvalue problems have been attracted

much attention. The Galerkin, Petrov-Galerkin, collocation, Nyström and degenerate

kernel methods are the commonly used methods for the approximation of eigenelements

of a compact integral operator. The analysis for the convergence of the Galerkin, Petrov-

Galerkin, collocation, Nyström and degenerate kernel methods are well documented in

Ahues et al. [1], Chatelin [17], Nelakanti [45], [46] and Osborn [47]. Error bounds for the

eigenvalues of a compact integral operator with various kernels can be found in Burgmeier

and Scott [13].

The general framework for the numerical solution of the eigenvalue problem of a

compact integral operator was discussed in Atkinson [6]. The convergence of the Nyström
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method has received a definite treatment in Anselone [5], by the introduction of the

collectively compact convergence concept. The convergence of eigenelements of a compact

integral operator in Nyström method were discussed in Atkinson [7]. Degenerate kernel

method for the eigenvalue problems of a compact integral operator was discussed in Schafer

[51] and Nelakanti [46]. Projection methods have been used for a long time. Their

abstract treatment goes back at least to Kantorovitch [32], Kantorovitch and Akilov

[33]. The convergence of projection methods has been widely studied in Kantorovitch

and Akilov [33], Krasnoselskii et al. [36]. A very comprehensive treatment of methods

for the eigenvalue problem of integral operators were given in Baker [10], Chatelin [17]

and Ahues et al. [1]. The general framework for projection and Nyström methods for the

approximations of eigenelements and their convergence rates for compact integral operator

were given in Osborn [47] and Chatelin [17] under collectively compact convergence and

norm convergence. In Nair [44] and Ahues et al. [1], existence of the eigenelements and

their convergence rates were given under the ν-convergence which is weaker than norm

convergence. The approximation of a eigenelements of a compact integral operator with

weakly singular kernels were studied in Chen et al. [21]. The superconvergence results

for the iterated eigenvector first noted by Sloan [53], [52] for the projection methods

(orthogonal projection) and in de Boor and Swartz [23], [24] for interpolatory projection

at Gaussian points. The superconvergence results for the iterated eigenvector of a compact

integral operator with Greens kernels were studied in Chatelin [15], [16], [17]. Multigrid

methods for the eigenvalue problem can be found in Hackbusch [31].

The influence of approximate quadrature in the projection methods for integral

equations were studied in Atkinson and Potra [9], Atkinson and Bogomolny [8], Golberg

[28] and Chen et al. [22]. In Kulkarni and Nelakanti [40], these approximate quadratures

for the projection methods were extended to the eigenvalue problem of a compact integral

operator and obtained the superconvergence results for the eigenelements. In Chen et al.

[18], these superconvergence results for the eigenvalues were further improved by using

Richardson extrapolation in iterated discrete methods.

Iterative refinement techniques improve the accuracy of eigenelements of a compact

integral operator. Let λ be a simple eigenvalue. In the iterative refinement technique,

an eigenvalue problem of relatively small size associated with a finite rank operator Tn0
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Chapter 1. Introduction

is solved. The eigenelements of Tn0 then provide the initial iterates for the refinement

schemes. Each iteration step involves only a solution of a system of equations. The

iteration schemes such as Rayleigh-Schrodinger scheme, elementary iteration and double

iteration were extensively studied in the literature (cf., Ahues et al. [1], Chatelin [17],

Deshpande and Limaye [25], Kulkarni and Limaye [39]). Iterative refinement schemes for

a cluster of eigenvalues were studied in Ahues et al. [1].

1.1 Motivation and overview of the work presented in
this thesis

Let X = L2(Ω) or L∞(Ω), where Ω is a bounded subset of Rd, d ≥ 1, with norm

‖.‖ and let T be the integral operator defined on X. Consider the following eigenvalue

problem: find u ∈ X and λ ∈ C− {0} such that

T u = λu, ‖u‖ = 1. (1.1)

Let {Xn} be a sequence of finite dimensional subspaces of X. If Pn is a sequence of

projections from X into Xn converging to the identity operator on X, then T can be

written as the following matrix form[
T LLn T HLn

T LHn T HHn

]
=

[
PnT Pn PnT (I − Pn)

(I − Pn)T Pn (I − Pn)T (I − Pn)

]
. (1.2)

If Pn chosen to be orthogonal projection, then in the standard Galerkin method T is

approximated by T LLn = PnT Pn, in the standard projection method T is approximated

by sum of the operators T LLn and T HLn , in the iterated Galerkin method T is approximated

by sum of the operators T LLn and T LHn , and in the M-Galerkin method T is approximated

by the sum of the blocks T LLn , T LHn and T HLn . Thus we have the following approximation

methods for the eigenproblem (1.1):

Projection method: find upn ∈ Xn and λpn ∈ C− {0} such that

PnT upn = λpnu
p
n, ‖upn‖ = 1. (1.3)

Galerkin method: find uGn ∈ Xn and λGn ∈ C− {0} such that

PnT PnuGn = λGnu
G
n , ‖uGn ‖ = 1. (1.4)
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1.1. Motivation and overview of the work presented in this thesis

Iterated Galerkin method: find uSn ∈ Xn and λSn ∈ C− {0} such that

T PnuSn = λSnu
S
n, ‖uSn‖ = 1. (1.5)

M-Galerkin method:( Kulkarni [38], Chen et al. [19]) find uMn ∈ X and λMn ∈ C− {0}
such that

T Mn uMn = λMn u
M
n , ‖uMn ‖ = 1, (1.6)

where T Mn = PnT Pn + (I − Pn)T Pn + PnT (I − Pn).

If Pn chosen to be an interpolatory projection then Galerkin, iterated Galerkin and M-

Galerkin methods are referred, respectively, as collocation, iterated collocation and M-

collocation methods.

Standard numerical treatment in the Galerkin method for the eigenvalue problem (1.1)

is normally to discretize the operator PnT Pn into a matrix and then solve the eigenvalue

problem of a resulting matrix. The computed eigenelements of the matrix are considered

as approximations of eigenelements of the compact linear integral operator. It is well

known that the matrix resulting from a discretization of the operator PnT Pn is a full

matrix. Solving the eigenvalue problem of a full matrix requires a significant amount of

computational effort. Hence, fast algorithms for such a problem are highly desirable.

In Chapter-2, we are interested in developing a truncated wavelet Galerkin method for

solving the eigenvalue problem (1.1) of a compact linear integral operator T with a smooth

kernel. The essence of these methods is to approximate the matrix by a sparse matrix

and solve the eigenvalue problem of a sparse matrix. Such algorithms are called matrix

truncation or matrix compression techniques. These matrix compression techniques lead

to fast algorithms for solving the eigenvalue problems. We develop truncated wavelet

Galerkin methods for finding the eigenelements of a compact integral operator T with

a smooth kernel based on the matrix compression techniques developed in Maass et al.

[42], Pereverzev [48]. We obtain error bounds for the eigenvalues and distance between

the spectral subspaces. By iterating the eigenvectors, we also obtain the improved error

bounds for the eigenvectors. Also computationally, we show that in the truncated matrix

eigenvalue problem, the number of inner products need to be evaluated in generating

the matrices is less in comparison to the Galerkin method. This makes the truncated

wavelet Galerkin method computationally economic in comparison to the wavelet Galerkin
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Chapter 1. Introduction

method for the eigenvalue problem (1.1). Further, we consider the elementary and double

iterations using the truncated wavelet Galerkin method for the eigenvalue problem (1.1)

and we obtain precise orders of convergence for the eigenvalue and eigenvector iterates. We

show conclusively that the double iteration is superior to the elementary iteration. Also,

we show that in both the elementary and double iterations, for every step of iteration,

the matrix to be inverted remains same and sparse.

In practice, while solving the approximated eigenvalue problems (1.4) and (1.5), it

becomes necessary to replace the integrals corresponding to the integral operator T and

the inner products by a numerical quadrature formulae. This leads to discrete methods

(cf., Atkinson and Bogomolny [8], Kulkarni and Nelakanti [40]). If Pn is chosen to be an

orthogonal projection, the approximate eigenvalue problems (1.4) and (1.5) give rise to

discrete Galerkin and iterated discrete Galerkin methods, respectively. If Pn is chosen

to be an interpolatory projection, the approximate eigenvalue problems (1.4) and (1.5)

give rise to discrete collocation and iterated discrete collocation methods, respectively.

In Kulkarni and Nelakanti [40], discrete and iterated discrete projection (Galerkin and

collocation) methods were discussed for the one dimensional eigenvalue problem (1.1) with

a smooth kernel. By choosing the numerical quadrature rule sufficiently accurate, it was

shown that the convergence rates were preserved for the eigenelements and they obtained

the superconvergence results. In Chen et al. [20], Richardson extrapolation methods were

discussed and obtained the improved error bounds for the eigenvalues in both iterated

discrete Galerkin and iterated discrete collocation methods.

In Chapter-3, we consider the eigenvalue problem of a two-dimensional compact in-

tegral operator with a smooth kernel and we obtain superconvergence rates for both

eigenvalues and gap between the spectral subspaces in discrete Galerkin (discrete colloca-

tion) and iterated discrete Galerkin (iterated discrete collocation) methods. Using discrete

Richardson extrapolation, we further improve the convergence rates for the eigenvalues.

However, using piecewise polynomials as basis functions, the computation of a suffi-

ciently accurate eigenvalues and eigenvectors may require the use of much finer partition

of the domain Ω and hence the size of the matrix eigenvalue problems corresponding to the

eigenvalue problems (1.4) and (1.5) become very large as the norm of the partition becomes

smaller. On the other hand, it is well known that the matrices in these matrix eigenvalue
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1.1. Motivation and overview of the work presented in this thesis

problems are dense and it requires huge computation to generate these matrices. We are

interested in the Galerkin and the collocation methods for the eigenvalue problem (1.1)

using global polynomial basis functions rather than piecewise polynomial basis functions.

Obviously, low degree polynomials imply small matrix eigenvalue problem, something

which is highly desirable in practical computations. The Legendre polynomial basis func-

tions are easy to generate recursively and they have the nice property of orthogonality.

Hence Legendre basis functions are less expensive computationally in solving the matrix

eigenvalue problem in comparison to piecewise polynomial basis functions.

In Chapter-4, we use Legendre polynomials as basis functions to find the approximate

eigenelements in Galerkin and collocation methods. We choose Xn as a sequence of Legen-

dre polynomial subspaces of X of degree ≤ n and Pn is either orthogonal or interpolatory

projection operator from X into Xn. It is known that ‖Pn‖∞ is unbounded. Therefore,

there exists at least one u ∈ C[−1, 1] such that ‖Pnu− u‖∞ 9 0 as n→∞. However, we

obtain superconvergence results for the eigenelements in both L2 and infinity norm.

To improve the error bounds further, in Chapter-5 we consider M-Galerkin and M-

collocation methods (1.6) for the eigenvalue problem (1.1) using Legendre polynomial

basis. We obtain the improved superconvergence results for the eigenelements in both L2

and infinity norm.

The fine spectrum of various operators on sequence space c and c0 were studied by

Wenger [54], Rhoades [50], Reade [49], Yildirim [56]. The fine spectrum of the difference

operator ∆ over the sequence spaces c0 and c is determined by Altay and Basar [3]. The

fine spectrum of the generalized difference operator B(r, s) for constant real numbers r, s

over the sequence spaces c0 and c is established by Altay and Basar [4], which has been

further generalized to difference operator B(r, s, t) over sequence spaces c0 and c is by

Furkan et al. [26], where r, s, t are taken as real scalars.

The fine spectra of various operators on sequence space lp is studied by Gonzàlez

[30], Cartlidge [14], Akhmedov and Basar [2], Bilgic and Furkan [12]. The fine spectra of

difference operator ∆ over the sequence spaces l1 and bv is studied by Kayaduman and

Furkan [35]; later the fine spectrum of the generalized difference operator B(r, s) over

sequence spaces l1 and bv is established by Furkan et al. [27]. The fine spectrum of the

generalized difference operator B(r, s, t) over sequence spaces l1 and bv is established by
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Chapter 1. Introduction

Bilgic and Furkan [11], where r, s, t are taken as scalars.

Chapte-6 & 7 are the continuation of the previous works discussed for fine spectrum,

where we give the characterization of spectrum and fine spectrum of the generalized second

order forward difference operator ∆2
uvw for various real sequences u = (uk), v = (vk) and

w = (wk) under certain restrictions over the sequence space c0 and l1. It is easy to verify

that by choosing suitably u, v and w sequences, i.e., for suitable ∆2
uvw one can get easily

the operators such as B(r, s, t) and ∆2. If u = (r), v = (s) and w = (t), then the operator

∆2
uvw reduces to B(r, s, t). If u = (1), v = (−2) and w = (1) are constant sequences,

then the operator ∆2
uvw reduces to second order forward difference operator ∆2. Thus,

the results of fine spectrum of ∆2
uvw unifies the corresponding results of many operators

whose matrix representation is a triple-band matrix.

1.2 Preliminaries
Let X be a complex Banach space and BL(X) denote the space of bounded linear

operators from X into X along with the operator norm, that is, for T in BL(X),

‖T ‖ = sup{‖T x‖ : ‖x‖ ≤ 1, x ∈ X}.

For an operator T in BL(X), we define its resolvent set by

ρ(T ) = {z ∈ C : (T − zI)−1 ∈ BL(X)},

and its spectrum by σ(T ) = C \ ρ(T ).

The spectral radius of the operator T is defined by rσ(T ) = sup{|λ| : λ ∈ σ(T )}.
Since rσ(T ) ≤ ‖T ‖ and the resolvent set ρ(T ) is open, it follows that σ(T ) is compact.

For T ∈ BL(X), we denote range space and null space of T , respectively, by

R(T ) = {T x : x ∈ X} and N (T ) = {x ∈ X : T x = 0}.

For z ∈ ρ(T ), let

R(z) = (T − zI)−1.

Let Γ be a simple closed Jordan curve in ρ(T ), then Int Γ denote the bounded component

of C \ Γ. Let

PS = − 1

2πi

∫
Γ

R(z) dz,
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1.2. Preliminaries

denotes the spectral projection associated with T and Λ = σ(T ) ∩ Int Γ.

Definition 1.1. A subspace Y of X is called invariant under T if T (Y) ⊂ Y.

We denote by T|Y the restriction of the operator T from Y into Y. We quote the

following Theorem from Chatelin [17] and Kato [34].

Theorem 1.1. (Spectral Decomposition Theorem) Let T ∈ BL(X) and Γ ⊂ ρ(T ).

Let PS be the spectral projection associated with T and σ(T ) ∩ Int Γ. Then R(PS) and

N (PS) are invariant under T . Moreover, σ(T ) is the disjoint union of σ(T|R(PS)) and

σ(T|N (PS)). In fact

σ(T|R(PS)) = σ(T ) ∩ Int Γ, σ(T|N (PS)) = σ(T ) ∩ Ext Γ.

Now let λ 6= 0 be an isolated point of σ(T ) and Γ be the positively oriented closed

curve around λ, which isolates λ from zero and from rest of the spectrum of T , i.e.,

σ(T ) ∩ Int Γ = {λ}. Let PS be the spectral projection associated with T and λ. If

rank PS = m < ∞, then λ is an eigenvalue of T and m is known as its algebraic

multiplicity. Let D = (T −λI)PS. If ` is the least positive integer such that D` = 0, then

` is called the ascent of λ. In fact, if ` is the ascent of λ, then

N ((T − λI)`) = N ((T − λI)`+1) and R(PS) = N ((T − λI)`).

Let

S =
1

2πi

∫
Γ

(T − zI)−1

z − λ
dz,

be the reduced resolvent associated with T and λ. Then S satisfies the following equations

(T − λI)S = S(T − λI) = I − PS ,

SPS = PSS = 0.

Spectral approximation
Consider the eigenvalue problem

T u = λu, 0 6= λ ∈ C, ‖u‖ = 1. (1.7)
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Chapter 1. Introduction

As the above problem, in general, can not be solved exactly, we consider approximate

solutions. For this purpose let (Tn) be a sequence in BL(X) approximating T . We

describe below various modes of convergence.

The classical convergence is Norm convergence: ‖T − Tn‖ → 0, as n→∞.

When T is compact, the following mode of convergence which is weaker than the norm

convergence is considered in Ahues et al. [1].

ν-Convergence: (cf., Ahues et al. [1]) Tn
ν−→ T if

‖Tn‖ ≤ C, ‖(Tn − T )T ‖ → 0, ‖(Tn − T )Tn‖ → 0 as n→∞.

If Tn converges to T in norm, then it is clear that Tn
ν−→ T .

Lemma 1.1. (Anselone [5] ) Let X be a Banach space and S ⊂ X be a relatively compact

set. Assume that T and Tn are bounded linear operators on X satisfying ‖Tn‖ ≤ C for all

n ∈ N, and for each x ∈ X,

‖Tnx− T x‖ → 0 as n→∞,

where C is a constant independent of n. Then ‖Tnx− T x‖ → 0 as n→∞ uniformly for

all x ∈ S.

For the rest of the chapter we assume that Tn
ν−→ T or Tn converges to T in norm.

The following result is proved in Nair [44].

Lemma 1.2. Let E be a closed subset of ρ(T ) − {0} and δ = min{|z| : z ∈ E}. Then

there is a constant C1 such that

max
z∈E
‖R(z)‖ ≤ C1.

Let n0 be a positive integer such that

‖(T − Tn)2‖ < δ2 and C1‖(T − Tn)Tn‖ ≤
δ

2
,

for all n ≥ n0. Then E ⊂ ρ(Tn) and

max
z∈E
‖Rn(z)‖ ≤ 2C1

[
1 +
‖T − Tn‖

δ

]
≤ C2,

for some constant C2 and all n ≥ n0.
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1.2. Preliminaries

Letting E = Γ in Lemma 1.2, we see that Γ ⊂ ρ(Tn) for all large n. For such n, let

PSn = − 1

2πi

∫
Γ

(Tn − zI)−1 dz,

denote the spectral projection associated with Tn and σ(Tn) ∩ Int Γ. We assume rank of

PS = m <∞, i.e., λ is an eigenvalue of T with algebraic multiplicity m.

Proposition 1.1. (Ahues et al. [1]) For sufficiently large n, the following hold

‖PS − PSn ‖ ≤ C‖T − Tn‖,

‖(PS − PSn )PS‖ ≤ C‖(T − Tn)T ‖,

‖(PS − PSn )PSn ‖ ≤ C‖(T − Tn)Tn‖,

where C is a constant independent of n.

We quote the following result from Ahues et al. [1], pp. 86.

Proposition 1.2. Let P1 and P2 be any two projections on X. If rσ(P1 − P2) < 1, then

rank P1 = rank P2.

Now since

rσ(PS − PSn ) ≤ C‖(PS − PSn )‖ → 0,

and

rσ((PS − PSn )2) ≤ ‖(PS − PSn )2‖ ≤ ‖(PS − PSn )PS‖+ ‖(PS − PSn )PSn ‖ → 0,

as n→∞, by Proposition 1.2 we obtain

rank PSn = rank PS = m.

Since rank PSn = m for all large n, the Spectral Decomposition Theorem 1.1 shows that,

Λn = σ(Tn) ∩ Int Γ consists of m eigenvalues λn,1, λn,2, . . . , λn,m of Tn, counted according

to their algebraic multiplicities. Let

λ̂n =
λn,1 + λn,2 + · · ·+ λn,m

m
,

denote their arithmetic mean.
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Chapter 1. Introduction

To discuss the closeness of eigenvectors, we define the gap between the closed sub-

spaces. For nonzero closed subspaces Y1 and Y2 of X, let

δp(Y1,Y2) = sup{dist(y,Y2) : y ∈ Y1, ‖y‖Lp = 1}, 1 ≤ p ≤ ∞,

then

δ̂p(Y1,Y2) = max{δp(Y1,Y2), δp(Y2,Y1)},

is known as the gap between Y1 and Y2.

The following Lemmas give the gap between the spectral subspaces, i.e., nearness of

the eigenvectors (cf., Ahues et al. [1], Chatelin [17], Nelakanti [46], Osborn [47]).

Lemma 1.3. ([1], [46] and [47]) Let Tn be the sequence of operators such that ‖T −Tn‖ → 0

or Tn
ν−→ T . Let PS and PSn be the spectral projections of T and Tn, respectively,

associated with their corresponding spectra inside Γ. Let R(PS) and R(PSn ) be their

ranges. Then for sufficiently large n, there exists a constant C independent of n such that

δ̂(R(PSn ),R(PS)) ≤ C sup{‖(T − Tn)u‖ : u ∈ R(PS)},

δ(T R(PSn ),R(PS)) ≤ C sup{‖T (T − Tn)u‖ : u ∈ R(PS)}.

In particular, for any un ∈ R(PSn ), ũn = T un, we have

‖un − PSun‖∞ ≤ C sup{‖(T − Tn)u‖ : u ∈ R(PS)},

‖ũn − PSũn‖∞ ≤ C sup{‖T (T − Tn)u‖ : u ∈ R(PS)}.

Lemma 1.4. ([1], [17], [47]) Let Tn be the sequence of operators such that ‖T −Tn‖ → 0 or

Tn
ν−→ T . Let PS and PSn be the spectral projections of T and Tn, respectively, associated

with their corresponding spectra inside Γ. Let R(PS) and R(PSn ) be their ranges. Then

for sufficiently large n, there exists a constant C independent of n such that

δ̂(R(PSn ),R(PS)) ≤ C‖(T − Tn)T ‖.

In particular for any un ∈ R(PSn ), we have

‖un − PSun‖ ≤ C‖(T − Tn)T ‖.

11



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2. Preliminaries

Lemma 1.5. ([46]) Let Tn be the sequence of operators such that ‖T − Tn‖ → 0 or

Tn
ν−→ T . Let PS and PSn be the spectral projections of T and Tn, respectively, associated

with their corresponding spectra inside Γ. Let R(PS) and R(PSn ) be their ranges. Then

for sufficiently large n, there exists a constant C independent of n such that

δ(T R(PSn ),R(PS)) ≤ C‖T (T − Tn)Tn‖.

In particular, for any un ∈ R(PSn ), we have

‖T un − PST un‖ ≤ C‖T (T − Tn)Tn‖.

The following Lemmas give the error bounds for eigenvalues (cf., Kulkarni and Nelakanti

[41], Nelakanti [45] [46]).

Lemma 1.6. ([41], [45]) Let λ be an eigenvalue of T with algebraic multiplicity m and

ascent `. For all large n, the map An = PSn |R(PS) : R(PS) → R(PSn ) is invertible and

‖A−1
n ‖ ≤ 2, and the following hold

|λ− λ̂n| ≤ C sup{‖T (T − Tn)u‖ : u ∈ R(PS)},

|λ− λn,j|` ≤ αn sup{‖T (T − Tn)u‖ : u ∈ R(PS)},

where

αn =
l−1∑
k=0

‖λI|R(PS) − A−1
n TnAn‖l−1−k‖λI|R(PS) − T |R(PS)‖k,

and C is a bounded constant independent of n.

Lemma 1.7. ([45]) If X is Banach space, T , Tn ∈ BL(X) for n ∈ N and ‖T − Tn‖ → 0

or Tn
ν−→ T , then for sufficiently large n, there exists a constant C independent of n such

that for j = 1, 2, . . . ,m,

|λ− λ̂n| ≤ C‖Tn(T − Tn)T ‖,

|λ− λn,j|` ≤ C‖Tn(T − Tn)T ‖,

where C is a constant independent of n.

12
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Iterative refinement schemes:
Let X∗ denote the adjoint space of X, i.e., the space of all conjugate-linear functionals on

X. We shall use the following notation:

〈x, f〉 = f(x), x ∈ X, f ∈ X∗.

We define the adjoint operator T ∗ ∈ BL(X∗) as

T ∗f = fT , for all f ∈ X∗.

Then

〈x, T ∗f〉 = 〈T x, f〉, for all x ∈ X, f ∈ X∗.

Now we assume that λ be a simple eigenvalue of T and PS be the spectral projection

associated with T and λ. Then rank PS = 1.

Since Tn
ν−→ T , there exists n0 such that for n ≥ n0, Γ ⊂ ρ(Tn),

sup{‖(Tn − zI)−1‖ : z ∈ Γ, n ≥ n0} <∞,

and the spectrum of Tn inside Γ consists of a simple eigenvalue λn. Hence ‖PSn ‖ ≤ p and

rank PS = rank PSn = 1.

Let

Sn =
1

2πi

∫
Γ

(Tn − zI)−1

z − λn
dz,

be the reduced resolvent associated with Tn and λn. Then we have

Sn(Tn − λnI) = (Tn − λnI)Sn = I − PSn , SnPSn = PSnSn = 0.

Let

T ∗n u∗n = λnu
∗
n, 〈un, u∗n〉 = 1.

The spectral projection PSn is then given by

PSnx = 〈x, u∗n〉un, x ∈ X.

Thus ‖PSn ‖ = ‖u∗n‖. Since ‖(PSn − PS)PS‖ → 0, it follows that ‖PSnu− u‖ → 0. Hence

‖〈u, u∗n〉un‖ = |〈u, u∗n〉| → ‖u‖ = 1,
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1.2. Preliminaries

and for sufficiently large n, 1
2
≤ |〈u, u∗n〉|.

We define

u(n) =
u

〈u, u∗n〉
.

Then u(n) is an eigenvector of T associated with λ which satisfies 〈u(n), u
∗
n〉 = 1.

Note that for all n large enough, ‖u(n)‖ ≤ 2. We consider the following two iterative

refinement schemes (cf., Ahues et al. [1], Deshpande and Limaye [25], Kulkarni and

Limaye [39]).

Elementary or fixed point iteration:

λ(0)
n = λn, u(0)

n = un, and for k = 1, 2, . . .

λ(k)
n = 〈T u(k−1)

n , u∗n〉,

u(k)
n = u(k−1)

n + Sn(λ(k)
n u(k−1)

n − T u(k−1)
n ).

The following error bounds are well known (cf., Kulkarni and Nelakanti [41]).

Lemma 1.8. ([41]) Let Tn
ν−→ T or ‖T − Tn‖ → 0 and λ(k)

n , u(k)
n be the iterates in the

elementary iteration. Then there is a positive integer n1 such that for all n ≥ n1

|λn − λ| ≤
4p

|λ|2
‖Tn(T − Tn)T ‖,

‖un − u(n)‖ ≤ α‖(T − Tn)T ‖.

Also, for k = 1, 2, . . .

|λ(k)
n − λ| ≤

2p

|λ|
α‖Tn(T − Tn)‖‖(T − Tn)T ‖(β‖T − Tn‖)k−1,

‖u(k)
n − u(n)‖ ≤ α‖(T − Tn)T ‖(β‖(T − Tn)‖)k,

where α and β are constants independent of n and k.

Double or modified fixed point iteration:

µ(0)
n = λn, ψ(0)

n = un and for k = 1, 2, . . .

λ(k)
n = 〈T ψ(k−1)

n , u∗n〉,

u(k−1)
n =

T ψ(k−1)
n

λ
(k)
n

,

µ(k)
n = 〈T u(k−1)

n , u∗n〉,

ψ(k)
n = u(k−1)

n + Sn(µ(k)
n u(k−1)

n − T u(k−1)
n ).
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Chapter 1. Introduction

Lemma 1.9. ([41]) Let Tn
ν−→ T or ‖T − Tn‖ → 0 and let µ(k)

n , ψ(k)
n be the iterates in

the double iteration. Then there is a positive integer n1 such that for all n ≥ n1 and for

k = 0, 1, 2, . . .

|µ(k)
n − λ| ≤ C‖Tn(T − Tn)T ‖(β‖(T − Tn)T ‖)k,

‖ψ(k)
n − u(n)‖ ≤ (β‖(T − Tn)T ‖)k+1,

where C and β are constants independent of n and k.

Remark 1.1. If Tn is of rank n, then the eigenvalue problem

Tnun = λnun,

reduces to a matrix eigenvalue problem of size n. The computation of y = Snx can be

reduced to a solution of a system of equations of size n:

(Tn − λnI)y = x,

PSn y = 0.

Thus at each step of the elementary iteration we need to solve a system of size n but

the coefficient matrix is the same at each step. On the other hand, for double iteration

in addition to the computations in the elementary iteration, we need to compute λ(k)
n =

〈T ψ(k−1)
n , u∗n〉 and

T ψ(k−1)
n

λ
(k)
n

.

We set the following notations:

Consider the following compact integral operator defined on X = L2[a, b] or L∞[a, b]

Ku(s) =

∫ b

a

K(s, t)u(t) dt, (1.8)

with a kernel K(., .) ∈ C([a, b]× [a, b]).

For r ≥ 0, let Cr[a, b] denote the space of r times continuously differentiable functions.

If K(., .) ∈ Cr([a, b]× [a, b]), then R(K) ∈ Cr[a, b] and we denote

K(i,j)(s, t) =
∂i+j

∂si∂tj
K(s, t),

and
‖K‖r,∞ = max{‖K(i,j)(., .)‖∞ : 0 ≤ i ≤ r, 0 ≤ j ≤ r}.
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1.2. Preliminaries

Set Ks(t) = K(s, t), for s, t ∈ [a, b]. Note that for K(s, .) ∈ Cj([a, b]), j = 0, 1, 2, . . . , r

and u ∈ C[a, b], we have

|(Ku)(j)(s)| =
∣∣∣ ∫ b

a

∂j

∂sj
K(s, t)u(t) dt

∣∣∣
≤ max

s,t∈[a,b]

∣∣∣ ∂j
∂sj

K(s, t)
∣∣∣ ∫ b

a

|u(t)| dt

≤ (b− a)1/2‖K‖j,∞‖u‖L2 ≤ (b− a)‖K‖j,∞‖u‖∞.

From this, it follows that for j = 0, 1, 2, . . . , r,

‖(Ku)(j)‖∞ ≤ (b− a)1/2‖K‖j,∞‖u‖L2 ≤ (b− a)‖K‖j,∞‖u‖∞, (1.9)

and

‖(Ku)(j)‖L2 ≤ (b− a)1/2‖(Ku)(j)‖∞

≤ (b− a)‖K‖j,∞‖u‖L2 ≤ (b− a)3/2‖K‖j,∞‖u‖∞. (1.10)

Let K be the compact linear integral operator defined by (??) and λ be the simple eigen-

value of K. Let Kn be a sequence of operators such that Kn
ν−→ K or ‖K − Kn‖ → 0,

as n → ∞. Let PS and PSn are the spectral projections of K and Kn, respectively. Let

R(PS) and R(PSn ) are ranges of the spectral projections PS and PSn , respectively, then
we prove the following Theorem.

Theorem 1.2. Let X be a Banach space and let K, Kn ∈ BL(X) such that Kn
ν−→ K or

‖K − Kn‖ → 0, as n→∞. Let R(PS) and R(PSn ) are ranges of the spectral projections

PS and PSn , respectively. Then for any un ∈ R(PSn ), we have

‖Kun − PSKun‖j,∞ = max
s∈[−1,1]

|〈(K −Kn)un, `
(j)
s 〉|, j = 0, 1, 2, . . . ,

where (K∗ − λ̄n)(I − (PS)∗)`
(j)
s = (I − (PS)∗)K̄

(j)
s .

Proof. For any un ∈ R(PSn ), we have (Chatelin [17]),

un − PSun = S(λn)(K −Kn)un, (1.11)

where S(λn) denote the reduced resolvent of K at λn.

Now by applying K on both sides of the above equation (1.11) and using the fact that

KPS = PSK, we obtain

Kun − PSKun = KS(λn)(K −Kn)un.
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Chapter 1. Introduction

Hence

(Kun − PSKun)(s) =

∫ b

a

K(s, t)[S(λn)(K −Kn)un](t) dt.

For j = 0, 1, 2, . . . ,

(Kun − PSKun)(j)(s) =

∫ b

a

K(j)(s, t)[S(λn)(K −Kn)un](t) dt

= 〈S(λn)(K −Kn)un, K̄
(j)
s 〉

= 〈(K −Kn)un, (S(λn))∗K̄(j)
s 〉

= 〈(K −Kn)un, `
(j)
s 〉.

In the above we have used the fact that (S(λn))∗K̄
(j)
s = `

(j)
s is uniquely solvable. Since

the kernel Ks is smooth, `s also smooth. Hence

‖Kun − PSKun‖j,∞ = max
s∈[−1,1]

|〈(K −Kn)un, `
(j)
s 〉|.

This completes the proof.

For any function u ∈ Cr[a, b], denote

‖u‖r,∞ =
r∑
j=0

‖u(j)‖∞,

where u(j) denotes the jth derivative of u.

Let N = {1, 2, . . . , }, N0 = N ∪ {0}, and for m ∈ N, we set Zm = {0, 1, 2, . . . ,m − 1}.
Through out this thesis, we assume C as a generic constant.

1.2.1 Preliminaries for fine spectrum

Let X and Y be the Banach spaces and T : X→ Y be a bounded linear operator. The

adjoint T ∗ of T is a bounded linear operator on the dual space X∗ of X defined by

(T ∗f)(x) = f(T x) for all f ∈ X∗ and x ∈ X.

Let X 6= {0} be a complex normed space and T : D(T ) → X be a linear operator

with domain D(T ) ⊆ X. With T , we associate the operator Tα = (T −αI), where α is a

complex number and I is the identity operator on D(T ). The inverse of Tα (if exists) is
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1.2. Preliminaries

denoted by T −1
α , where T −1

α = (T − αI)−1 and known as the resolvent operator of T . It
is easy to verify that T −1

α is linear, if Tα is linear. Since the spectral theory is concerned

with many properties of Tα and T −1
α which depend on α, so we are interested in the set of

those α in the complex plane for which T −1
α exists or T −1

α is bounded or domain of T −1
α is

dense in X. For this, we need some definitions and known results given below which will

be used in the sequel.

Definition 1.2. (Kreyszig [37], pp. 371) Let X 6= {0} be a complex normed space and

T : D(T ) → X be a linear operator with domain D(T ) ⊆ X. A regular value of T is a

complex number α such that

(R1) T −1
α exists,

(R2) T −1
α is bounded,

(R3) T −1
α is defined on a set which is dense in X.

Resolvent set ρ(T ,X) of T is the set of all regular values α of T . Its complement

σ(T ,X) = C \ ρ(T ,X) in the complex plane C is called spectrum of T . The spectrum

σ(T ,X) is further partitioned into three disjoint sets namely point spectrum, continuous

spectrum and residual spectrum as follows:

Point Spectrum σp(T ,X) is the set of all α ∈ C such that T −1
α does not exists, i.e.,

condition (R1) fails. The element of σp(T ,X) is called eigenvalue of T .

Continuous spectrum σc(T ,X) is the set of all α ∈ C such that conditions (R1) and

(R3) hold but condition (R2) fails, i.e., T −1
α exists, domain of T −1

α is dense in X but T −1
α

is unbounded.

Residual Spectrum σr(T ,X) is the set of all α ∈ C such that T −1
α exists but do not

satisfy conditions (R3), i.e., domain of T −1
α is not dense in X. The condition (R2) may

or may not holds good.

Goldberg’s classification of operator Tα(Goldberg [29], pp. 58): Let X be a Banach

space and Tα ∈ BL(X), where α is a complex number. Again let R(Tα) and T −1
α denote

the range and inverse of the operator Tα, respectively. Then the following possibilities

may occur:

(A) R(Tα) = X,

(B) R(Tα) 6= R(Tα) = X,

(C) R(Tα) 6= X,

18



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1. Introduction

and

(1) Tα is injective and T −1
α is continuous,

(2) Tα is injective and T −1
α is discontinuous,

(3) Tα is not injective.

Remark 1.2. Combining (A), (B), (C) and (1),(2), (3); we get nine different cases.

These are labelled by A1, A2, A3, B1, B2, B3, C1, C2 and C3. The notation α ∈ A2σ(T ,X)

means the operator Tα ∈ A2, i.e., R(Tα) = X and Tα is injective but T −1
α is discontinuous.

Similarly others.

Remark 1.3. If α is a complex number such that Tα ∈ A1 or Tα ∈ B1, then α belongs

to the resolvent set ρ(T ,X) of T on X. The other classification gives rise to the fine

spectrum of T .

Definition 1.3. (Maddox [43], pp. 220-221) Let λ, µ be two nonempty subsets of the

space w of all real or complex sequences and A = (ank) be an infinite matrix of complex

numbers ank, where n, k ∈ N0. For every x = (xk) ∈ λ and every integer n, we write

An(x) =
∑
k

ankxk,

where the sum without limits is always taken from k = 0 to k = ∞. The sequence

Ax = (An(x)), if it exists, is called the transformation of x by the matrix A. Infinite

matrix A ∈ (λ, µ) if and only if Ax ∈ µ whenever x ∈ λ.

Lemma 1.10. (Wilansky [55], pp. 129) The matrix A = (ank) gives rise to a bounded

linear operator T ∈ BL(c0) from c0 to itself if and only if

(1) the rows of A in l1 and their l1 norms are bounded,

(2) the columns of A are in c0.

Note: The operator norm of T is the supremum of the l1 norms of the rows.

Lemma 1.11. (Wilansky [55], pp. 126) The matrix A = (ank) gives rise to a bounded

linear operator T ∈ BL(l1) from l1 to itself if and only if the supremum of l1 norms of

the columns of A is bounded.

Note: The operator norm of T is the supremum of the l1 norms of the columns.
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1.3. Outline of the thesis

Lemma 1.12. (Goldberg [29], pp. 59) T has a dense range if and only if T ∗ is one to

one, where T ∗ denotes the adjoint operator of the operator T .

Lemma 1.13. (Goldberg [29], pp. 60) The adjoint operator T ∗ of T is onto if and only

if T has a bounded inverse.

1.3 Outline of the thesis
The work presented in this thesis has two parts, part-A and part-B. The part-A

contains Chapter-2 to 5 and part-B have chapter-6 and 7. Part-A is concerned with

approximations of eigenvalue problem for a compact integral operator whereas in part-

B is all about fine spectrum of generalized second order forward difference operator on

sequence space c0 and l1.

In chapter-2, we consider the approximation of eigenelements of a compact integral

operator with a smooth kernel by the Galerkin method using wavelet bases. By truncating

the Galerkin operator, we obtain a sparse representation of a matrix eigenvalue problem.

We obtain error bounds for the eigenelements. We show that the truncated wavelet

Galerkin method is computationally economic in comparison to the Galerkin method

using spline bases. Using elementary and double iteration refinement schemes, we obtain

the convergence rates for both eigenvalue and eigenvector iterates.

In chapter-3, we consider approximation of eigenelements of a two-dimensional com-

pact integral operator with a smooth kernel by discrete Galerkin (discrete collocation)

and iterated discrete Galerkin (iterated discrete collocation) methods. By choosing nu-

merical quadrature rule appropriately, we obtain error bounds for eigenelements for both

discrete Galerkin (discrete collocation) and iterated discrete Galerkin (iterated discrete

collocation) methods. We propose an asymptotic error expansion of the iterated discrete

Galerkin and iterated discrete collocation method. Then we obtain asymptotic error ex-

pansion of approximate eigenvalues. We then apply Richardson extrapolation to obtain

improved error bounds for the eigenvalues.

In chapter-4, we consider Galerkin and collocation methods for eigenvalue problem of

compact integral operator for smooth kernels using Legendre polynomials basis. Also we

consider Legendre Galerkin method for eigenvalue problem of weakly singular kernel. We

obtain similar superconvergence rates for the eigenelements using global polynomial bases
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Chapter 1. Introduction

as in the case of piecewise polynomial bases both in L2 and infinity norm. We also show

that the derivatives of iterated eigenvector converges to the corresponding derivatives of

exact eigenvector with same order of convergence.

In chapter-5, we consider M-Galerkin and M-collocation methods for eigenvalue prob-

lem of a compact integral operator with smooth kernel using Legendre polynomials basis.

We obtain the improved superconvergence rates for the eigenelements in both L2 and

infinity norm. We also show that the derivatives of iterated eigenvector converges to the

corresponding derivatives of exact eigenvector with same order of convergence.

Numerical examples are presented to illustrate theoretical estimate from Chapter-2 to

Chapter-5.

In chapter-6 , we introduce the generalized second order difference operator ∆2
uvw on

sequence space c0, where u = (uk), v = (vk) and w = (wk), k ∈ N0 are real sequences

under some restrictions. We have obtained the results on spectrum and point spectrum for

the operator ∆2
uvw over sequence space c0. We have also obtained the results on continuous

spectrum, residual spectrum and fine spectrum of the operator ∆2
uvw on sequence space

c0.

In chapter-7, we have obtained the results on spectrum and point spectrum for the

operator ∆2
uvw over the sequence space l1. We have also obtained the results on continuous

spectrum, residual spectrum and fine spectrum of the operator ∆2
uvw on sequence space

l1.
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