Contents

Title Page	i
Certificate of approval	ii
Certificate	iii
Declaration	iv
Acknowledgement	V
List of symbols and abbreviations	vi
Abstract	vii
Contents	viii
List of figures	xi
List of tables	XV
1 Introduction	
1.1 Multiband OFDM – a background	1
1.2 Overview of ECMA368 standard for Multiband OFDM	2
1.3 Objectives of the thesis	8
1.4 Contributions of the thesis	8
1.5 Organization of the thesis	9
2 Literature Survey	
2.1 Literature survey on Multiband OFDM receiver	11
2.2 IQ mismatch issues in OFDM receiver	18
2.3 Enhancement of MBOFDM transmission data rates	19
2.4 Symbol transmission efficiency enhancement for MBOFDM	20
3 Studies on MBOFDM Receiver – Timing and Frequency Synchronization	
3.1 Introduction to Chapter 3	22
3.2 Multiband preamble based timing acquisition	
3.2.1 Construction and properties of TDS base sequence	23
3.2.2 Alternate proposal for TDS base sequence	27
3.2.3 Multiband timing synchronization	28
3.2.4 Performance analysis of proposed multiband timing synchronization n	nethod 31
3.2.5 Effect of tone nulling on synchronization	38
3.2.6 Semi blind algorithm for symbol timing acquisition	40
3.2.7 Initializing a MBOFDM receiver without prior knowledge of the TFC	49
3.3 Techniques of frequency offset estimation in MBOFDM receivers	
3.3.1 Effect of frequency offset on OFDM signal	51
3.3.2 Single band CFO Estimation for MBOFDM receiver	53

3.3.3	Multi band CFO Estimation for MBOFDM receiver	60
3.3.4	Effect of multipath on proposed algorithm for CFO estimation	62
3.3.5	Techniques for SCFO estimation on MBOFDM receivers	63
3.3.6	Baseband carrier/ sample clock frequency offset compensation	68
3.3.7	Residual carrier frequency offset tracking in frequency hopping MBOFDM	71
	receivers	
3.4 Su	nmary of Chapter 3	74
4 Stu	dies on MBOFDM receiver – Bit Recovery	
4.1 Inti	roduction to Chapter 4	75
4.2 ove	erlap add for ZPS to CP conversion	76
4.3 Tec	chniques for channel frequency response estimation in MBOFDM	
4.3.1	MSE reduction in channel frequency response estimates for MBOFDM	80
	receivers	
4.3.2	Multiband CFR estimates for MBOFDM receivers	86
4.3.3	Null tone detection from CFR estimates	89
4.4 Equ	ualization/Diversity combining	
4.4.1	Derivation of the log likelihood ratio	94
4.4.2	Equalization with linear combining	98
4.4.3	Effect of timing error on DCM equalization	103
4.4.4	Modified formulation for DCM	104
4.5 Imj	plementation of low complexity Viterbi decoder for MBOFDM receiver	107
4.6 ME	30FDM receiver performance simulation in UWB channels	113
4.7 IQ	mismatch aware baseband receiver design for MBOFDM	117
4.8 Det	tection of narrowband victims with a wideband OFDM receiver	126
4.9 Su	nmary of Chapter 4	136
5 Enl	nanced rate transmission of MBOFDM signal	
5.1 Inti	roduction to Chapter 5	138
5.2 Ext	tension to higher data rates	
5.2.1	Extension to 640/800/960 Mbps	139
5.2.2	Extension to 600/720 Mbps	149
5.2.3	Performance simulation for proposed enhanced data rates	153
5.3	Methods for enhancing symbol transmission efficiency	
5.3.1	Techniques to reducing ZPS for 53.3/80 Mbps data rates	154
5.3.2	Techniques to reducing ZPS for 106.7/160/200 Mbps data rates	154
5.3.3	Techniques to eliminate ZPS for TFC1/2	161
5.3.4	Techniques to eliminate ZPS for TFC3/4	167

5.3.5	Performance simulation for ZPS reduction techniques	168
5.4	Frequency dependant(FD) IQ mismatch aware equalizer design:	
5.4.1	System model for FD IQ mismatch	169
5.4.2	Channel frequency response estimation in presence of FD IQ mismatch	171
5.4.3	Image cancelling equalizer for FD IQ mismatch	173
5.4.4	Performance analysis for proposed FD mismatch aware receiver	175
5.5	Summary of Chapter 5	179
6	Conclusion	180
References		182
Appendix A Snapshots of ECMA 368 standard		187
Author's Communications		193
Author's Resume		194