Chapter		Page
Title Page		i
Approval of the	Approval of the Viva-voce Board	
Certificate by	the Supervisor	iii
Curriculum V	itae	iv
Acknowledge	ments	vi
Declaration		vii
Contents		viii
List of Figure	25	xiii
List of Symbo	ols and Abbreviations	xvi
List of Tables	3	xix
Abstract		xxi
Chapter 1	Introduction and Review of literature	
F	1.1 Enzymes	1
	1.2 Lipolytic enzymes	1
	1.3 Lipase specificity	3
	1.4 Sources of lipase	4
	1.5 Fungal lipase production through solid–state fermentation	6
	1.5.1 General aspects and advantages of solid-state fermentation	7
	1.6 Application of statistical and evolutionary approaches for modeling and optimization approaches	9
	1.7 Structure of lipases	11
	1.8 Catalytic mechanism of lipase	13
	1.9 Interfacial activation of lipases	14
	1.10 Immobilization of lipases	17
	1.10.1 Adsorption	18
	1.10.2 Covalent binding	21
	1.10.3 Cross-linking	22
	1.10.4 Entrapment	23
	1.11 Industrial applications of Lipases	25
	1.11.1 Lipase mediated synthesis of fatty acid methyl esters	27
	1.11.2 Lipase mediated solvent-free synthesis of flavour esters	32

CONTENTS

Chapter 2	Materials and Methods	
F	2.1 Materials	35
	2.1.1 Microorganism	35
	2.1.2 Raw material	35
	2.1.3 Chemicals	35
	2.1.4 Instruments and apparatus	36
	2.2. Methods	37
	2 2 1 Media	38
	2.2.1.1 Potato Dextrose Agar medium	38
	2.2.1.2 Medium for lipase production from <i>R. oryzae</i> NRRL 3562	38
	2.2.2 Buffer	38
	2.2.2.1 50 mM Tris – HCl buffer (pH 8.0 and 9.0)	38
	2.2.2.2 50 mM sodium acetate buffer (pH 4.0–5.0)	38
	2.2.2.3 50 mM potassium phosphate buffer (pH 6–7)	38
	2.2.2.4 50 mM glycine–NaOH buffer (pH 10–11)	39
	2.2.3 Reagents	39
	2.2.3.1 For lipase assay	39
	2.2.3.2 For protein estimation	39
	2.2.4 Strain maintenance and inoculum preparation	39
	2.2.5 Experimental set up for Solid state fermentation	40
	2.2.6 Experimental setup for extraction of lipase from fermented biomass	40
	2.2.7 Lipase assay	40
	2.2.8 Estimation of protein content	41
	2.2.9 Determination of specific activity	41
	2.2.10 Determination of Biomass yield	41
	2.2.11 Modeling and optimization methodology	42
	2.2.11.1 Modeling and optimization through Response surface methodology (RSM)	42
	2.2.11.1.1 Selection of variables	42
	2.2.11.1.2 Design of experiments (DOF)	42
	2.2.11.1.2 Design of experiments (DOL)	43 //3
	2.2.11.1.4 Regression analysis	43 44
	2.2.11.1.5 Model adequacy checking and optimization	44
	2.2.11.2 Evolutionary intelligence based ontimization	45
	approaches	45
	2.2.11.2.1 Optimization through Genetic Algorithm (GA)	45
	2.2.11.2.2 Optimization through Differential Evolution (DE)	50
	2.2.11.2.3 Swarm intelligence based optimization approach.	51
	2.2.12 Concentration of lipase through ammonium sulphate precipitation	54
	2.2.13 Interfacial activation of lipase	55
	2.2.14 Immobilization of lipase	55
	2.2.14.1 Immobilization of lipase on chitosan and / chitin / agarose / casein through adsorption	55

	2.2.14.2 Immobilization on celite / eupergit C/ calcium	56
	carbonate / silica by covalent attachment	
	2.2.14.3 Immobilization by entrapment	56
	2.2.15 Lipase mediated synthesis of fatty acid methyl esters	57
	2.2.15.1 Lipase mediated transesterification of edible /non-	57
	edible/waste frying oils	
	2.2.15.2 GC analysis	57
	2.2.15.3 Determination of fuel properties	58
	2.2.15.3.1 Determination of pour point through pour point apparatus	58
	2 2 15 3 2 Determination of kinematic viscosity	58
	2 2 15 3 3 Determination of flash point	58
	2.2.15.3.4 Determination of calorific value	59
	2.2.16. Linase mediated solvent free synthesis of flavour	60
	esters	00
	2.2.16.1 Transesterification Reaction	60
	2.2.16.1.1 Methyl butyrate synthesis	60
	2 2 16 1 2 Octyl acetate synthesis	60
	2.2.16.7. Analysis of flavour esters	60
	2.2.16.2.1 GC analysis of methyl hutvrate	60
	2.216.2.2. GC analysis of neury outyrate	61
	2.210.2.2 GC analysis of octyl acctate	01
Chapter 3	Modeling and optimization of lipase production by <i>R</i> .	
	orvzae NRRL 3562 through SSF	
	3.1 Introduction	62
	3.2 Modeling and optimization methodology	63
	3.2.1 Modeling and optimization by RSM	63
	$3.2.7$ Evolutionary intelligence based $G\Delta$ optimization	6 <u>4</u>
	approach	04
	3.2.3 Optimization by DE	65
	3.2.4 Swarm intelligence based optimization approach	65
	3.3 Results and Discussion	66
	3.3.1 Model development, statistical analysis and validation	66
	3.3.2 Evolutionary intelligence based GA optimization approach	69
	3.3.3 Optimization by DE	72
	3.3.4 Swarm intelligence based optimization approach	75
	3.3.5 Comparison between GA, DE and PSO	76
Charten 4	Modeling of linese extraction from formanted biometry	
Chapter 4	A 1 Introduction	70
	4.1 Introduction	/ 7 01
	4.2. Modeling and optimization methodology	01 01
	4.2.1 windering and optimization studies of lipase extraction using RSM	81
	4.2.2 Optimization by Genetic Algorithm	82
	4.2.3 Optimization of lipase extraction by DE	83

	4.2.4 Optimization by PSO	83
	4.3 Results and Discussion	83
	4.3.1 Selection of extraction parameters for lipase recovery	83
	4.3.2 Modeling studies of lipase extraction using RSM	85
	4.3.2.1 Validation of the RSM model and its optimization	89
	4.3.3 Optimization by evolutionary intelligence based GA	90
	4 3 4 Optimization of lipase extraction by DE	93
	4.3.5 Optimization by swarm intelligence based PSO approach	96
	4.3.6 Comparison between GA, DE and PSO	97
Chapter 5	Immobilization of <i>Rhizopus oryzae</i> NRRL 3562 lipase	
I	5.1 Introduction	100
	5.2 Results and discussion	102
	5.2.1 Partial purification of lipase by ammonium sulphate precipitation	102
	5.2.2 Interfacial activation of <i>R. orvzae</i> NRRL 3562 lipase	102
	5.2.3 Immobilization of lipase	104
	5.2.3.1 Immobilization of lipase by adsorption	104
	5.2.3.2 Covalent immobilization of lipase	106
	5.2.3.3 Entrapment of lipase in calcium alginate	107
	5.2.3.4 pH stability of immobilized enzyme	108
	5.2.3.5 Thermal stability of immobilized enzyme	109
	5.2.3.6 Kinetic studies of immobilized lipase	110
	5.2.3.7 Operational stability of immobilized lipase	111
Chapter 6	5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of	111
Chapter 6	5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters	111
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 	111 113
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 	111 113 113
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 	111 113 113 115
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 	111 113 113 115 115
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 	111 113 113 115 115 116
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 	111 113 113 115 115 116 117
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.4 Effect of reaction temperature on transesterification 	111 113 113 115 115 116 117 118
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.4 Effect of reaction temperature on transesterification 6.2.1.5 Effect of initial addition of water on transesterification 	111 113 113 115 115 116 117 118 119
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.4 Effect of reaction temperature on transesterification 6.2.1.5 Effect of initial addition of water on transesterification 6.2.1.6 Effect of agitation speed on transesterification 	111 113 113 115 115 116 117 118 119 120
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.4 Effect of reaction temperature on transesterification 6.2.1.5 Effect of agitation speed on transesterification 6.2.1.7 Effect of immobilized enzyme amount on transesterification 	 111 113 113 115 115 116 117 118 119 120 121
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.4 Effect of reaction temperature on transesterification 6.2.1.5 Effect of agitation speed on transesterification 6.2.1.7Effect of immobilized enzyme amount on transesterification 6.2.1.8 Reusability of immobilized lipase 	 111 113 113 115 115 116 117 118 119 120 121 122
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of reaction temperature on transesterification 6.2.1.5 Effect of initial addition of water on transesterification 6.2.1.6 Effect of agitation speed on transesterification 6.2.1.7 Effect of immobilized enzyme amount on transesterification 	 111 113 113 115 115 116 117 118 119 120 121 122 123
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of reaction temperature on transesterification 6.2.1.5 Effect of agitation speed on transesterification 6.2.1.7 Effect of agitation speed on transesterification 6.2.1.7 Effect of immobilized enzyme amount on transesterification 6.2.1.8 Reusability of immobilized lipase 6.2.1.9 Determination of fuel properties 6.3 Lipase mediated solvent –free synthesis of flavour esters 	 111 113 113 115 115 116 117 118 119 120 121 122 123 124
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of reaction temperature on transesterification 6.2.1.5 Effect of agitation speed on transesterification 6.2.1.7 Effect of agitation speed on transesterification 6.2.1.7 Effect of immobilized enzyme amount on transesterification 6.2.1.8 Reusability of immobilized lipase 6.2.1.9 Determination of fuel properties 6.3 Lipase mediated solvent –free synthesis of flavour esters 6.3.1 Modeling and optimization approach 	 111 113 113 115 115 116 117 118 119 120 121 122 123 124 126
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of reaction temperature on transesterification 6.2.1.5 Effect of agitation speed on transesterification 6.2.1.7 Effect of agitation speed on transesterification 6.2.1.7 Effect of immobilized lipase 6.2.1.9 Determination of fuel properties 6.3 Lipase mediated solvent –free synthesis of flavour esters 6.3.1 Modeling and optimization approach 6.3.1.1 Octyl acetate synthesis 	 111 113 113 115 115 116 117 118 119 120 121 122 123 124 126 126
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.4 Effect of reaction temperature on transesterification 6.2.1.5 Effect of agitation speed on transesterification 6.2.1.7 Effect of immobilized enzyme amount on transesterification 6.2.1.8 Reusability of immobilized lipase 6.2.1.9 Determination of fuel properties 6.3 Lipase mediated solvent –free synthesis of flavour esters 6.3.1.1 Octyl acetate synthesis 6.3.1.1.1 Modeling and optimization studies through RSM 	 111 113 113 115 115 116 117 118 119 120 121 122 123 124 126 126 126 126
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.5 Effect of reaction temperature on transesterification 6.2.1.6 Effect of agitation speed on transesterification 6.2.1.7Effect of immobilized enzyme amount on transesterification 6.2.1.8 Reusability of immobilized lipase 6.2.1.9 Determination of fuel properties 6.3 Lipase mediated solvent –free synthesis of flavour esters 6.3.1 Modeling and optimization approach 6.3.1.1 Modeling and optimization studies through RSM 6.3.1.2 Evolutionary intelligence based GA approach 	 111 113 113 115 115 116 117 118 119 120 121 122 123 124 126 126 126 126 128
Chapter 6	 5.2.3.7 Operational stability of immobilized lipase Industrial applications of lipase for the synthesis of FAME's and flavour esters 6.1 Introduction 6.2 Lipase mediated synthesis of fatty acid methyl esters 6.2.1 Results and Discussion 6.2.1.1 Effect of methanol to oil ratio on transesterification 6.2.1.2 Effect of reaction time on transesterification 6.2.1.3 Effect of volume of solvent on transesterification 6.2.1.5 Effect of initial addition of water on transesterification 6.2.1.6 Effect of agitation speed on transesterification 6.2.1.7 Effect of immobilized enzyme amount on transesterification 6.2.1.8 Reusability of immobilized lipase 6.2.1.9 Determination of fuel properties 6.3 Lipase mediated solvent –free synthesis of flavour esters 6.3.1 Modeling and optimization approach 6.3.1.1 Modeling and optimization studies through RSM 6.3.1.1.2 Evolutionary intelligence based GA approach 6.3.1.1.3 DE based optimization approach 	 111 113 113 115 115 116 117 118 119 120 121 122 123 124 126 126 126 126 128 128

	6.3.1.1.4 Swarm intelligence based PSO approach	128
	6.3.1.2 Methyl butyrate synthesis	128
	6.3.1.2.1 Modeling and optimization studies through RSM	128
	6.3.1.2.2 Evolutionary intelligence based GA approach	130
	6.3.1.2.3 DE based optimization approach	130
	6 3 1 2 4 Swarm intelligence based PSO approach	130
	6.3.2 Results and discussion	131
	6.3.2.1 Effect of alcohol molarity on transesterification reaction	131
	6.3.2.2 Effect of reaction time on transesterification reaction	132
	6.3.2.3 Effect of water addition on transesterification reaction	132
	6.3.2.4 Effect of temperature on transferification reaction	133
	6.3.2.5 Effect of agitation speed on transesterification reaction	134
	6.3.2.6 Effect of immobilized enzyme amount on transesterification reaction	135
	6.3.2.7 Reusability of immobilized lipase	136
	6.3.3 Modeling and optimization studies of flavour esters	137
	6.3.3.1 Octyl acetate	
	6.3.3.1.1 Modeling and optimization studies through RSM	137
	6.3.3.1.2 Evolutionary intelligence based GA approach	140
	6.3.3.1.3 DE based optimization approach6.3.3.1.4 Swarm intelligence based PSO optimization	142
	approach	144
	6.3.3.1.5 Comparison of evolutionary and swarm intelligence based optimization approaches	146
	6.3.3.2 Methyl butyrate	147
	6.3.3.2.1 Modeling and optimization studies through RSM	147
	6.3.3.2.2 Evolutionary intelligence based GA optimization approach	150
	6.3.3.2.3 DE based optimization approach	151
	6.3.3.2.4 Swarm intelligence based PSO optimization approach	153
	6.3.3.2.5 Comparison of evolutionary and swarm intelligence based optimization approaches	154
Conclusions	Conclusions	156
	New contributions	157
	Future prospectus	157
References	References	158
Appendices	Appendix A Data for figures of chapter 3	181
LL	Appendix B Data for figures of chapter 4	184
	Appendix C Data for figures of chapter 5	186
	Appendix D Data for figures of chapter 6	187

List of Figures

Fig. No	Content	Page No
1.1	General enzymatic reaction of a lipase.	2
1.2	Different types of synthesis reactions catalyzed by lipases.	3
1.3	General folding pattern of α/β hydrolases.	11
1.4	Mechanism of action of lipase in hydrolysis reaction.	14
1.5	Interfacial activation of lipase.	15
1.6	Relationship between NCF and CF of an immobilized enzyme and its applications.	18
1.7	Enzyme immobilization techniques.	20
1.8	Transesterification reaction.	29
2.1	Flow chart of simple genetic algorithm.	46
2.2	Simplified flowchart of DE algorithm.	51
2.3	Sequence of events in Particle swarm optimization.	54
3.1	Surface plots of lipase activity with: (a) temperature and liquid to solid ratio; (b) temperature and pH; (c) temperature and incubation time; (d) liquid to solid ratio and pH; (e) liquid to solid ratio and incubation time; (f) pH and incubation time.	68
3.2	Results of parametric study of GA (a) Mutation probability (Pm) Vs Fitness (b) Population size Vs Fitness (c) Maximum number of generations Vs Fitness.	70
3.3	Population profile at different generations in the GA.	71
3.4	Variation of objective function value with the number of generations at (a) $CR=0.6$; (b) $F=0.20$.	74
3.5	Variation of objective function value with the number of generations in PSO	76
3.6	Comparison of optimization approaches.	77
4.1	Surface plots of E.A(U/gds)) with (A) buffer molarity [BC] and DMSO (B) soaking time [ST] and DMSO (C) temperature [T] and DMSO (D) soaking time [ST] and buffer concentration [BC] (E) temperature [T] and buffer concentration [BC] (F) temperature [T] and soaking time [ST].	88
4.2	Results of parametric study of GA (a) Mutation probability (Pm) Vs Fitness (b) Population size Vs Fitness (c) Maximum number of generations Vs Fitness.	91
4.3	Population profile at different generations in the genetic algorithm	92
4.4	Variation of objection value with number of generations (a) $CR=0.5$ (b) $F=0.25$.	95
4.5	Variation of objective function value with the number of generations in PSO.	96
4.6	Comparison of different optimization approaches.	97
5.1	Interfacial activation of lipase.	103
5.2	Far UV-CD spectra of lipase	104
5.3	Comparison of immobilization techniques.	108

5.4	Effect of pH on enzyme activity.	109
5.5	Thermo stability of free and immobilized lipases.	109
5.6	Effect of substrate concentration on the activity of free and immobilized lipase.	110
5.7	The Lineweaver-Burk plot of free and immobilized lipase.	111
5.8	Operational stability of immobilized lipase in flavour ester synthesis.	112
6.1	Effect of methanol to oil ratio on transesterification.	116
6.2	Effect of reaction time on transesterification.	117
6.3	Effect of amount of solvent on transesterification.	118
6.4	Effect of temperature on transesterification.	119
6.5	Effect of addition of water on transesterification.	119
6.6	Effect of agitation speed on transesterification.	120
6.7	Effect of lipase amount on transesterification.	121
6.8	Reusability of immobilized lipase in transesterification of oils.	122
6.9	Enzyme catalyzed ester synthesis.	124
6.10	Effect of alcohol molarity on transesterification.	131
6.11	Effect of reaction time on transesterification.	132
6.12	Effect of water addition on molar conversion.	133
6.13	Effect of temperature on transesterification.	134
6.14	Effect of agitation speed on transesterification.	135
6.15	Effect of enzyme amount on transesterification.	136
6.16	Reusability of immobilized lipase in flavour ester synthesis	137
6.17	Surface plots of molar conversion (MC) (%) with: (a) molarity of alcohol and incubation time; (b) molarity of alcohol and temperature; (c) molarity of alcohol and enzyme amount; (d) incubation time and temperature; (e) incubation time and enzyme amount; (f) temperature and enzyme amount.	139
6.18	Results of parametric study of GA (a) Mutation probability (Pm) Vs Fitness (b) Population size Vs Fitness (c) Maximum number of generations Vs Fitness.	141
6.19	Variation of objection value with number of generations (a) CR=0.6; (b) F=0.25.	143
6.20	Variation of objective function value with the number of generations in PSO.	145
6.21	Surface plots of molar conversion (MC) (%) with: (a) molarity of alcohol and incubation time; (b) molarity of alcohol and temperature;	149

(c) molarity of alcohol and enzyme amount; (d) incubation time and temperature; (e) incubation time and enzyme amount; (f) temperature and enzyme amount.

- 6.22 Results of parametric study of GA (a) Mutation probability (Pm) Vs 151 Fitness (b) Population size Vs Fitness (c) Maximum number of generations Vs Fitness.
- 6.23 Variation of objection value with number of generations (a) CR=0.5; 152(b) F=0.3.
- 6.24 Variation of objective function value with the number of generations 154 in PSO.

List of abbreviations

0⁄0	Percentage
μΜ	Micro molar
a free	Specific activity of free lipase
<i>a</i> imm	Specific activity of immobilized lipase
ANOVA	Analysis of variance
ASTM	: American standard testing and measurement
BSA	Bovine serum albumin
CCD	Central composite design
CF	Catalytic functions
CR	Crossover constant
СТАВ	Cetyl trimethyl ammonium bromide
D	Dimensionality of the problem
DAG	Diacyl glycerol
DE	Differential evolution
DMSO	Dimethyl sulfoxide
DOE	Design of experiments
DV	Decoded value
E.A	Enzyme activity
EA	Evolutionary algorithm
Eqn	Equation
F	Mutation constant
FA	Fatty acid
FAME	Fatty acid methyl ester
FCR	Folin-Ciocalteau reagent
Fig	Figure
FO	Fried oil
g	Gram
GA	Genetic algorithm
GC	Gas chromatography

gds	Gram dry substance
Gen	Number of generations
GRAS	Generally recognized as safe
h	Hour
IT	Incubation time
K_m	Michaelis constant
Μ	Molarity
MAG	Monoacyl glycerol
MAH	Mahwa oil
MB	Methyl butyrate
mg	Milli gram
min	Minute
ml	Milli liter
mM	Milli molar
MOPSO-CD	Multi-objective particle swarm optimization – crowding distance
NCF	Non-catalytic functions
nm	Nanometer
NP	Number of population
OA	Octyl acetate
°C	Degree centigrade
OD	Optical density
Pc	Crossover probability
Pm	Mutation probability
<i>p</i> -NP	Para-nitro phenol
<i>p</i> -NPP	Para-nitro phenyl palmitate
PONG	Pongamia oil
PSO	Particle swarm optimization
Psi	Pascal per square inch
RB	Rice bran oil
rpm	Revolutions per minute
RSM	Response surface methodology

SDS	Sodium dodecyl sulphate
SIMA	Simarouba oil
SmF	Submerged fermentation
SSF	Solid state fermentation
Т	Temperature
TAG	Triacyl glycerol
U	Unit
V _{max}	Maximum velocity
v/v	Volume/Volume
w/v	Weight/Volume
W	Inertia weight

List of Tables

No No 1.1 List of fungal species used for lipase production. 5 1.2 Criteria for robust immobilized enzymes. 19 2.1 Table showing the decoded and real values for the generated 48 population. 63 3.1 SSF variables and their levels. 63 63 2.2 Central composite design with the experimental, predicted responses 64 and its R-studentized residuals. 67 3.3 Results of significance test on the non-linear model – coefficients, 67 standard errors, T statistics and P values for the lipase activity 67 3.4 Results of ANOVA – lipase activity. 67 7 3.5 Experimental and predicted lipase activity (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. 78 4.1 Extraction parameters utilized in GA, DE and PSO approaches. 78 8.1 4.2 Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. 82 4.3 Results of ANOVA – enzyme activity (EA) (U/gds). 87 8.5 standard errors, T statistics and P-values for lipase activity 4.4 4.8	Table	Content	Page
1.1List of fungal species used for lipase production.51.1Criteria for robust immobilized enzymes.192.1Table showing the decoded and real values for the generated 48population.633.1SSF variables and their levels.633.2Central composite design with the experimental, predicted responses 64and its R-studentized residuals.673.3Results of significance test on the non-linear model – coefficients, 67standard errors, T statistics and P values for the lipase activity673.5Experimental and predicted lipase activity (U/gds) with optimal 77variable conditions of OVAT, GA, DE and PSO approaches.783.6Optimal parameters and levels for central composite design.814.2Central composite design for lipase extraction with the experimental, 8282predicted responses and its R-studentized residuals.874.3Results of ANOVA – enzyme activity (CA) (U/gds).874.4Results of ANOVA – enzyme activity (CA) (U/gds).874.5Experimental and predicted lipase activity (U/gds) with optimal variable conditions of one variable at a time, GA, DE and PSO approaches.985.1Partial purification of lipase.1025.2The percentage of secondary structure, calculated by the Jasco aptroaches.1025.3Immobilization of lipase through adsorption.1055.4Covalent immobilization variables and their levels- For octyl acetate 1275.5Values of Km, Vmm of free and immobilized lipase.1111<	No		No
 Criteria for robust immobilized enzymes. Table showing the decoded and real values for the generated 48 population. SSF variables and their levels. Central composite design with the experimental, predicted responses 64 and its R-studentized residuals. Results of significance test on the non-linear model – coefficients, 67 standard errors, T statistics and P values for the lipase activity Results of ANOVA – lipase activity (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. Optimal parameters utilized in GA, DE and PSO approaches. Optimal parameters and levels for central composite design. Extraction parameters and levels for central composite design. Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. Results of significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity Results of ANOVA – nezyme activity (U/gds). Results of approaches. MoVA – nezyme activity (U/gds). Partial purification of lipase. Partial purification of lipase. Covalent immobilization of lipase. Immobilization of lipase through adsorption. Fuel properties of lipase mediated synthesis of methyl esters. Covalent immobilization of lipase. Fuel properties of lipase mediated synthesis of methyl esters. Covalent immobilization or lipase. Fuel properties of lipase mediated synthesis. Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis.<!--</td--><td>1.1</td><td>List of fungal species used for lipase production.</td><td>5</td>	1.1	List of fungal species used for lipase production.	5
 2.1 Table showing the decoded and real values for the generated 48 population. 3.1 SSF variables and their levels. 63 3.2 Central composite design with the experimental, predicted responses 64 and its R-studentized residuals. 3.3 Results of significance test on the non-linear model – coefficients, 67 standard errors, T statistics and P values for the lipase activity 3.4 Results of ANOVA – lipase activity. 67 3.5 Experimental and predicted lipase activity (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. 78 4.1 Extraction parameters and levels for central composite design. 8.1 4.2 Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. 4.3 Results of significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 87 4.5 Experimental and predicted lipase activity (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 98 5.1 Partial purification of lipase. 5.2 The percentage of secondary structure, calculated by the Jasco software. 5.3 Immobilization of lipase through adsorption. 5.4 Covalent immobilization of lipase and immobilized lipase. 5.5 Values of K_m, V_{max} of free and immobilized lipase. 6.4 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.4 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.6 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standa	1.2	Criteria for robust immobilized enzymes.	19
3.1 SSF variables and their levels. 63 3.2 Central composite design with the experimental, predicted responses and its R-studentized residuals. 63 3.3 Results of significance test on the non-linear model – coefficients, 67 standard errors, T statistics and P values for the lipase activity 67 3.4 Results of ANOVA – lipase activity. 67 3.5 Experimental and predicted lipase activity (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. 78 3.6 Optimal parameters and levels for central composite design. 81 4.2 Central composite design for lipase extraction with the experimental, 82 82 predicted responses and its R-studentized residuals. 83 82 4.3 Results of ANOVA – enzyme activity (E.A) (U/gds). 87 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 86 5.1 Experimental and predicted lipase activity (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 98 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 102 5.3 Immobilization of lipase through adsorption. 105 5.4 Cov	2.1	Table showing the decoded and real values for the generated	48
3.1 SSF variables and their levels. 63 3.2 Central composite design with the experimental, predicted responses 64 and its R-studentized residuals. 3.3 Results of significance test on the non-linear model – coefficients, 67 standard errors, T statistics and P values for the lipase activity 67 3.4 Results of ANOVA – lipase activity. 67 3.5 Experimental and predicted lipase activity (U/gds) with optimal variable conditions of OVAT, GA, DE and PSO approaches. 78 4.1 Extraction parameters and levels for central composite design. 81 4.2 Central composite design for lipase extraction with the experimental, 82 82 predicted responses and its R-studentized residuals. 87 4.3 Results of significance test on the non-linear model – coefficients, 86 81 standard errors, T statistics and P-values for lipase activity 87 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds), with optimal 98 87 4.5 Experimental and predicted lipase activity (U/gds) with optimal 92 98 9.6 Optimal parameters utilized in GA, DE and PSO approaches. 98 9.1 Partial purification of lipase. 102 5.2 The percen		population.	
 3.2 Central composite design with the experimental, predicted responses 64 and its R-studentized residuals. 3.3 Results of significance test on the non-linear model – coefficients, 67 standard errors, T statistics and P values for the lipase activity 3.4 Results of ANOVA – lipase activity. 3.7 Experimental and predicted lipase activity (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. 3.6 Optimal parameters utilized in GA, DE and PSO approaches. 3.6 Optimal parameters utilized in GA, DE and PSO approaches. 3.6 Optimal parameters and levels for central composite design. 4.1 Extraction parameters and levels for central composite design. 4.2 Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. 4.3 Results of significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 87 4.5 Experimental and predicted lipase activity (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 98 5.1 Partial purification of lipase. 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 5.3 Immobilization of lipase through adsorption. 5.4 Covalent immobilization of lipase. 5.5 Values of K_m, V_{max} of free and immobilized lipase. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.4 Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis. 6.4 Central composite design with the experimental, predicted responses a	3.1	SSF variables and their levels.	63
 3.3 Results of significance test on the non-linear model – coefficients, 67 standard errors, T statistics and P values for the lipase activity 3.4 Results of ANOVA – lipase activity. (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. 3.6 Optimal parameters utilized in GA, DE and PSO approaches. 78 4.1 Extraction parameters and levels for central composite design. 81 4.2 Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. 4.3 Results of significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 87 4.5 Experimental and predicted lipase activity (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 98 5.1 Partial purification of lipase. 102 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 103 5.4 Covalent immobilization of lipase. 106 5.5 Values of K_m, y_{max} of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis. 6.4 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis. 6.6 Central composite design with the experimental, predicted responses and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Central composite design with the experimental, predicted responses and its R-studentized residua	3.2	Central composite design with the experimental, predicted responses and its R-studentized residuals.	64
 Results of ANOVA – lipase activity. 67 Experimental and predicted lipase activity (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. Optimal parameters and levels for central composite design. 81 Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. Results of Significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity Results of ANOVA – enzyme activity (E.A) (U/gds). 87 Experimental and predicted lipase activity (U/gds) with optimal variable conditions of one variable at a time, GA, DE and PSO approaches. Optimal parameters utilized in GA, DE and PSO approaches. 98 Partial purification of lipase. 102 The percentage of secondary structure, calculated by the Jasco 104 software. 105 Covalent immobilization of lipase. 106 Values of Km, Vmax of free and immobilized lipase. 111 Fuel properties of lipase mediated synthesis of methyl esters. 123 Transesterification variables and their levels- For octyl acetate 127 synthesis. Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion (%). Results of ANOVA – Molar conversion (%). Optimization results of lipase mediated synthesis of octyl acetate. 	3.3	Results of significance test on the non-linear model – coefficients, standard errors, T statistics and P values for the lipase activity	67
 3.5 Experimental and predicted lipase activity (U/gds) with optimal 77 variable conditions of OVAT, GA, DE and PSO approaches. 3.6 Optimal parameters utilized in GA, DE and PSO approaches. 78 4.1 Extraction parameters and levels for central composite design. 81 4.2 Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. 4.3 Results of significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 87 4.5 Experimental and predicted lipase activity (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 5.1 Partial purification of lipase. 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 5.3 Immobilization of lipase through adsorption. 5.4 Covalent immobilization of lipase. 5.5 Values of Km, V_{max} of free and immobilized lipase. 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversio	3.4	Results of ANOVA – lipase activity.	67
3.6Optimal parameters utilized in GA, DE and PSO approaches.784.1Extraction parameters and levels for central composite design.814.2Central composite design for lipase extraction with the experimental, predicted responses and its R-studentized residuals.824.3Results of significance test on the non-linear model – coefficients, standard errors, T statistics and P-values for lipase activity864.4Results of ANOVA – enzyme activity (E.A) (U/gds).874.5Experimental and predicted lipase activity (U/gds) with optimal variable conditions of one variable at a time, GA, DE and PSO 	3.5	Experimental and predicted lipase activity (U/gds) with optimal variable conditions of OVAT, GA, DE and PSO approaches.	77
 4.1 Extraction parameters and levels for central composite design. 4.2 Central composite design for lipase extraction with the experimental, predicted responses and its R-studentized residuals. 4.3 Results of significance test on the non-linear model – coefficients, standard errors, T statistics and P-values for lipase activity 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 4.5 Experimental and predicted lipase activity (U/gds) with optimal variable conditions of one variable at a time, GA, DE and PSO approaches. 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 98 Partial purification of lipase. 5.1 Partial purification of lipase through adsorption. 5.2 The percentage of secondary structure, calculated by the Jasco software. 5.3 Immobilization of lipase mediated synthesis of methyl esters. 5.4 Covalent immobilization of lipase. 5.5 Values of K_m, V_{max} of free and immobilized lipase. 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 6.2 Transesterification variables and their levels- For octyl acetate synthesis. 6.3 Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate synthesis. 6.5 Central composite design with the experimental, predicted responses and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA-Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	3.6	Optimal parameters utilized in GA, DE and PSO approaches.	78
 4.2 Central composite design for lipase extraction with the experimental, 82 predicted responses and its R-studentized residuals. 4.3 Results of significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 87 4.5 Experimental and predicted lipase activity (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 98 Optimal parameters utilized in GA, DE and PSO approaches. 98 Partial purification of lipase. 98 The percentage of secondary structure, calculated by the Jasco 104 software. 5.3 Immobilization of lipase through adsorption. 5.4 Covalent immobilization of lipase. 5.5 Values of K_m, V_{max} of free and immobilized lipase. 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA- Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	4.1	Extraction parameters and levels for central composite design.	81
 4.3 Results of significance test on the non-linear model – coefficients, 86 standard errors, T statistics and P-values for lipase activity 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 87 4.5 Experimental and predicted lipase activity (U/gds) with optimal variable conditions of one variable at a time, GA, DE and PSO approaches. 98 5.1 Partial purification of lipase. 102 5.2 The percentage of secondary structure, calculated by the Jasco software. 105 5.4 Covalent immobilization of lipase. 106 5.5 Values of Km, Vmax of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate synthesis. 6.3 Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA- Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	4.2	Central composite design for lipase extraction with the experimental, predicted responses and its R-studentized residuals.	82
 4.4 Results of ANOVA – enzyme activity (E.A) (U/gds). 4.5 Experimental and predicted lipase activity (U/gds) with optimal yariable conditions of one variable at a time, GA, DE and PSO approaches. 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 9.8 Partial purification of lipase. 9.1 Partial purification of lipase. 9.2 The percentage of secondary structure, calculated by the Jasco 104 software. 5.3 Immobilization of lipase through adsorption. 5.4 Covalent immobilization of lipase. 5.5 Values of K_m, V_{max} of free and immobilized lipase. 106 5.5 Values of K_m, V_{max} of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for methyl butyrate 129 synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	4.3	Results of significance test on the non-linear model – coefficients, standard errors. T statistics and P-values for lipase activity	86
 4.5 Experimental and predicted lipase activity (U/gds) with optimal 98 variable conditions of one variable at a time, GA, DE and PSO approaches. 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 98 5.1 Partial purification of lipase. 102 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 5.3 Immobilization of lipase through adsorption. 105 5.4 Covalent immobilization of lipase. 106 5.5 Values of K_m, V_{max} of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	4.4	Results of ANOVA – enzyme activity (E.A) (U/gds).	87
 4.6 Optimal parameters utilized in GA, DE and PSO approaches. 98 5.1 Partial purification of lipase. 102 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 104 5.3 Immobilization of lipase through adsorption. 105 5.4 Covalent immobilization of lipase. 106 5.5 Values of K_m, V_{max} of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	4.5	Experimental and predicted lipase activity (U/gds) with optimal variable conditions of one variable at a time, GA, DE and PSO approaches.	98
 5.1 Partial purification of lipase. 102 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 105 5.3 Immobilization of lipase through adsorption. 105 5.4 Covalent immobilization of lipase. 106 5.5 Values of K_m, V_{max} of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	4.6	Optimal parameters utilized in GA, DE and PSO approaches.	98
 5.2 The percentage of secondary structure, calculated by the Jasco 104 software. 5.3 Immobilization of lipase through adsorption. 5.4 Covalent immobilization of lipase. 5.5 Values of K_m, V_{max} of free and immobilized lipase. 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	5.1	Partial purification of lipase.	102
 5.3 Immobilization of lipase through adsorption. 5.4 Covalent immobilization of lipase. 5.5 Values of K_m, V_{max} of free and immobilized lipase. 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	5.2	The percentage of secondary structure, calculated by the Jasco software.	104
 5.4 Covalent immobilization of lipase. 106 5.5 Values of K_m, V_{max} of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	5.3	Immobilization of lipase through adsorption.	105
 5.5 Values of K_m, V_{max} of free and immobilized lipase. 111 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA- Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	5.4	Covalent immobilization of lipase.	106
 6.1 Fuel properties of lipase mediated synthesis of methyl esters. 123 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA- Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	5.5	Values of K_m , V_{max} of free and immobilized lipase.	111
 6.2 Transesterification variables and their levels- For octyl acetate 127 synthesis. 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA- Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	6.1	Fuel properties of lipase mediated synthesis of methyl esters.	123
 6.3 Central composite design with the experimental, predicted responses 127 and its R-studentized residuals-for octyl acetate synthesis. 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	6.2	Transesterification variables and their levels- For octyl acetate synthesis.	127
 6.4 Transesterification variables and their levels-For methyl butyrate 129 synthesis. 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	6.3	Central composite design with the experimental, predicted responses and its R-studentized residuals-for octyl acetate synthesis.	127
 6.5 Central composite design with the experimental, predicted responses 129 and its R-studentized residuals-for methyl butyrate synthesis. 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 138 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146 	6.4	Transesterification variables and their levels-For methyl butyrate synthesis.	129
 6.6 Results of significance test on the non-linear model – coefficients, 138 standard errors, T statistics and P values for the Molar conversion 6.7 Results of ANOVA– Molar conversion (%). 6.8 Optimization results of lipase mediated synthesis of octyl acetate. 	6.5	Central composite design with the experimental, predicted responses and its R-studentized residuals-for methyl butyrate synthesis	129
6.7Results of ANOVA- Molar conversion (%).1386.8Optimization results of lipase mediated synthesis of octyl acetate.146	6.6	Results of significance test on the non-linear model – coefficients, standard errors, T statistics and P values for the Molar conversion	138
6.8 Optimization results of lipase mediated synthesis of octyl acetate. 146	6.7	Results of ANOVA– Molar conversion (%).	138
	6.8	Optimization results of lipase mediated synthesis of octyl acetate.	146

6.9	Results of significance test on the non-linear model – coefficients,	147
	standard errors, T statistics and P values for molar conversion	

- Results of ANOVA molar conversion (%). Optimization results of lipase mediated synthesis of methyl butyrate. 6.10 148
- 6.11 155