
Abstract

Lipase production from Rhizopus oryzae NRRL 3562 was modeled and optimized using response surface methodology integrated evolutionary and swarm intelligence based approaches. The proposed approaches bring about an increased lipase activity of $15 \mathrm{U} / \mathrm{gds}$ by overcoming the local optima problem as compared to One variable at a time approach. The optimum conditions proposed by particle swarm optimization for lipase production from R. oryzae NRRL 3562 were $35.58{ }^{\circ} \mathrm{C}$, liquid to solid ratio of 1.49 , pH of 5.28 and 4.83 days of incubation time for obtaining maximum lipase activity of $96.78 \mathrm{U} / \mathrm{gds}$. Modeling and optimization of the lipase extraction from the fermented biomass, through RSM coupled evolutionary and swarm intelligence based approach resulted in an enhanced recovery of more than $20 \mathrm{U} / \mathrm{gds}$ with respect to the one variable at a time approach.

Relative activity of lipase was significantly (more than 150\%) enhanced in presence of Tween-80. Among different immobilization techniques (adsorption, covalent attachment and entrapment) the covalently immobilized lipase on celite exhibited an enhanced stability towards temperature and pH . The immobilized lipase of R. oryzae NRRL 3562 was successfully employed in the transesterification of edible/non edible/waste oils. The fuel properties of crude oils were enhanced by lipase mediated transesterification and the results obtained thereof were compared with ASTM D675 standards. Covalently immobilized lipase from R. oryzae NRRL 3562 was effectively used to synthesize octyl acetate and methyl butyrate in a solvent free system, and RSM-integrated evolutionary and swarm intelligence based approaches were used to model and optimize the synthesis of flavour esters.

Keywords: Rhizopus oryzae NRRL 3562 lipase; Modeling; Optimization; Response surface methodology; Evolutionary algorithm; Particle swarm optimization; Immobilization; Biodiesel; Flavour esters; Solvent-free synthesis.

