CHAPTER I

INTRODUCTION

Gal#anomagnetié phenomena in ferromagnetic metals and
alloys have aroused great interest in a large number of workers
for a period which encompasses the last four decades, The past
decade, in particular, has witnessed greatly expanded activity,
mostly in the nature of refinements of the basic theory and
application to specific examples, with particular attention to
special cases of Band structure ;nd_acattering mechaniswms, The
nesd to pursue such new lines of thinking has arisen from the
fact that there still exists a considerable speculation regarding
the possible source of the peculiarities in the transport proper-
ties of such materials, The annﬁalous magnetoresistivity, its
unusual dependence on temperature, 1mpurity contént and appliled
magnetic field, the failure of Kohler's fule in certain tempera-
ture ranges, the increase in the elecirical réuistifity'faater
than the first powsr of tgmperature near.tho Curie point and the
discontinuity in its temperature derivative at the Curie tempera-
ture, the deviations from Matthiessen's rule at low temperatures
are only a few amongst many of the special features of ferro-
magnetiés. The conventional thaofics of metallic conduction
(Block, 1928, 1930) and magnetoresistivity (two-band model) fail
to provide a satisfactory answer for these-pecuiiarities as can
be meen from the example that’ the resistivity of ferromagnetic as
well as non-ferromagnetic transition metals deviates from the

well~known Bloch-Gruneiaan 15 law at low temperatures, where,
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instead a T2 behaviour is approached. These observations point

to the fact that in the aarlier theéories no account has been

taken of the extra complexity introduced by the influence of the
exchange interactions, which order ithe spinsg in a ferromagnet.

In order to overcome these inadequacies in the previous models,
many of the subsequent models have been conceived, In the sec-
tions that follow an appraisal of the different theories has heen
made on the hasls of the avalilable experimental data on varioua
ferromagnetic metals and-alloyaf Although quantum theory of trana-
pbrt congtitutes & major portion of the theoretical effort in'this
field in recent years, almost invariebly it is found that the semi-
classical theory (Boltzmann traﬁsport equation) forms an excellent
and reliable spproximation, and has, moreover, the great virtue of
lending itself to vivid physical interpretations. Thus, the next
section is devoted to the formulation and the genarai golution of

Boltzmann transport equation.

(1) Formulation and solutiom of the trgpiport equation :

It is customary to deseribe the assembly of conducting
electrons in a metal by means of a distribution function £(K,ret),
defined such that the number of elsctrons in the six-dimensional
volume element dK dr at time t is given by (1/1;11-3) f{K,r,t)
dk dr. Iﬁ princiﬁle, the electroniec transport properties of
a e¢onductor are coupletely specified once f(g,g,t) is known.

Boltzmann transport equation, in its fundamental form, can be

(%5{)&.‘,-_.(%) =0 e (1)

written as
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The first term in equation. (1) represents two processes whicﬁ
br.’mg about change-a in the distribution function, namely,

(i) ohanges due to the drift of electrons under the action of
axternally applied fie].ds and (ii) changes in distribution due to
thermal gradients, wheroaa the seeond term takes account of the
changes in £ due tq coll_isitmp_ of glec#xj_ops_w;thin themgelves
@d wifh iﬁpeffections in the lattice. Equation (1) represents

a ateady atate as distinguished from the equilibrium state, denoted
by & (€) » which holds when the external fields and temperature

gradients are absent.

If the drift, diffusion and collision (Nordheim, 1931)
terms in equation {1) are written in detall, Boltgmenn trensport

equation assumes its usual form
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where Q (XK', X} is the probability per unit t:_l.me that an electron
makes a. transition from the state K' +to the statoJ E and thé
w'eig.ht factors f(g') ang [_1 - f(g___)] anqure'that tl_m state K'
is occupied.by an eiactron while the state K 1is# unoccupled j
thirohjr faking proper account of Pauli exclusion .prin_cipla. Sin_li-
lar inierpretation applies to the secondl term in the integrand of

right-hand silide,

The solution of the integro-dirferentiél equation (2) can
be obtained in closed form only whem the collision integral is

expressed in terms of a relaxation time [ i.., when (a%/ 'b‘t)c =
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~($-$)/T. The physical significance of ‘U is that of a time
constant in the expopential approach of a disturbed distribution f
to the equilibrium distribution f£_ when the external inter-

actions are suddenly swipched off.

The relaxation time approximation is not always a useful
concept particularly when the mechanism of scattering is complex,
A meaningful relaxation time T (X) can be defined whemever the
energy change of an electron per collision is small compared to
kT, the thermal emergy. In other words, a relaxation time can be
defined unambiguously when applied to scattering of electrons by
acoustieal phoﬁons or impurities in rather impure metals and pure
metals at temperatures higher than their Debye temperature. Im
the temperature range in which this approximeation fails, trangi-
‘tion probabilities are to be calculated explicitly by a detailed
consideration of the scattering processeas. The general function
congists in expanding f£(K, r) about the equilibrium distribution

function f (K, r) as

£(x,Y) = i,(_e) + 4 (&Y

ey 25,
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Such an expression indicates that the electric field aiwmply shifts
the distribution in K space unaltered in shape and the cu€rent
density has a non-zero value only over s small fegion near the
Fermi surface where 3:&/35 is finite, 95 is thus a measure of
the deviation caused by external fields in the distribution func-
_ tion from its equilibrium value. Hence, the problem reduced to

finding out the solution for 56 « In the sbsence of thermal



gradients, equation (2) can be rewritten in terms of ¢ (in relaxa-
tion time approximation)} as

$ = eTEY + ica (bn-29) e (8

where o= VEE X VK

Although a formal solution of (4) can be written in closed
form, it i{s so cumbersome that it has rarely been employed for
computations. Instead, physically meaningful solutions can be
obtained if the following two situations are considered 1
(1) H# 0, € = +2 Kz/zll*. i.e, the Permi surface is spherieal

and {(2) H # 0, € an arbitrary, well-behaved function of K.

in the first case, the simplification arises from the fact

that now YV =% E/m' and equation (4) ylelds the solution

§ = evy -« THXE +«O B@D]/LrTw]
| e (5

where « =

2 -
m*C
It is evident from equation (5) that if H and E areé colinear,
it reduces to ¢ = eTEY whicia is the solution of equation (4)
in the ¢ase H = O, Thus, it follows that under these conditions
the ugnetic field has no :Lnrluencle whatever on the tranaport
properties of the electron gass Altermatively, a gquasl-free-

electron gas. cannot display longitudinal magnetoresistance.

In the secaond case, the solution of equation (4) Lends

 itmelf to computaticm only in the low-field 1limit, o« TH K| .



